Skip to main content

Applications of Association Reactions in the Gas Phase

  • Chapter
  • First Online:
Ion/Molecule Attachment Reactions: Mass Spectrometry

Abstract

Chapter 5 explores the application of alkali-metal ion/molecule association in the gas-phase to mass spectrometry (MS). This chapter (1) surveys the fundamental basis to build the instrument, (2) describes the instrumentation to the measurement of mass spectrum, and (3) summarizes mass spectrometric applications to measurements on chemical compounds, which include intermediary free radical, interstellar, environmentally important, and unfamiliar or unstable species. The subject of application of the Restriction of Hazardous Substances (RoHS) detective is also covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson BA, Davidson WR, Lovett AM. Applications of a versatile technique for trace analysis: atmospheric pressure negative chemical ionization. Environ Health Persp. 1980;36:77–84.

    CAS  Google Scholar 

  2. Hodges RV, Beauchamp JL. Application of alkali ions in chemical ionization mass spectrometry. Anal Chem. 1976;48:825–8.

    CAS  Google Scholar 

  3. Bombick D, Pinkston JD, Allison J. Potassium ion chemical ionization and other uses of an alkali thermionic emitter in mass spectrometry. Anal Chem. 1984;56:396–402.

    CAS  Google Scholar 

  4. Schmelzeisen-Redeker G, Giessmam U, Rollgen FW. In-beam ionization by alkali ion attachment applying a two-filament ion source. Org Mass Spectrom. 1985;20:305–309.

    CAS  Google Scholar 

  5. Anderson WR Jr, Frick W, Daves CD Jr A direct technique for obtaining electron-impact mass spectra of polar, involatile compounds. Application to underivatized disaccharides. J Am Chem Soc. 1978;100:1974–75.

    CAS  Google Scholar 

  6. Daves GD Jr, Anderson WR Jr. Cationization in electron ionization mass spectrometry of polar organic molecules. Int J Mass Spectrom Ion Phys. 1979;30:385–388.

    CAS  Google Scholar 

  7. Cotter RJ, Yergey AL. Thermally produced ions in desorption mass spectrometry. Anal Chem. 1981;53:1306–07.

    CAS  Google Scholar 

  8. Bombick DD, Allison A. Desorption/Ionization mass spectrometric technique for the analysis of thermally labile compounds based on thermionic emission materials. Anal Chem. 1987;59:458–66.

    CAS  PubMed  Google Scholar 

  9. Stoll R, Rollgen FW. Thermal desorption of quasimolecular ions org. Mass Spectrom. 1981;16:72–75.

    CAS  Google Scholar 

  10. Shiokawa Y, Nakamura M, Hirano Y, Fujii T. Ionization apparatus and ionization method for mass spectrometry. From U.S. Pat Appl Publ. 2002;US 20020053636 A1 20020509, Language: English.

    Google Scholar 

  11. Fujii T. A novel method for detection of radical species in the gas phase: usage of Lithium ion attachment to chemical species. Chem Phys Lett. 1992;191:162–8.

    CAS  Google Scholar 

  12. Fujii T, Ogura M, Jimba J. Chemical ionization mass spectrometry with use of alkali ion attachment to molecule. Anal Chem. 1989;61:1026–29.

    CAS  Google Scholar 

  13. Fujii T. Quadrupole mass spectrometry in combination with lithium ion attachment for sampling at atmospheric pressure: possible coupling to a superfluid critical chromatography. Anal Chem. 1992;64:775–8.

    CAS  Google Scholar 

  14. Rollgen FW, Schulten HR. Molecular weight determination by cationization. Org Mass Spectrom. 1975;10:660–8.

    Google Scholar 

  15. Fujii T. Ion attachment mass spectrometry, Vol 6: ionization methods. In: Gross M, editors. Encyclopedia of mass spectrometry. America society for mass spectrometry. New York: Elsevier; 2007. pp 327–34.

    Google Scholar 

  16. Sablier M, Fujii T. Mass spectrometry of free radicals. Chem Rev. 2002;102:2855–924.

    CAS  PubMed  Google Scholar 

  17. Fujii T. Alkali-metal ion/molecule association reactions and their applications to mass spectrometry. Mass Spectrom Rev. 2000;19:111–38.

    CAS  PubMed  Google Scholar 

  18. Sablier M, Fujii T. Mass spectrometry of free radicals: a methodological overview. In: Webb G, editor. Progress in chemistry, Sect. C (Phys Chem). Cambridge: Royal Society of Chemistry; 2005. pp 53–99.

    Google Scholar 

  19. Fujii T. A new method for thermal analysis: ion-attachment mass spectrometry (IAMS). J Therm Anal Calorim. 2012;110:17–25.

    CAS  Google Scholar 

  20. Kitahara Y, Takahashi S, Tsukagosi M, Juhász M, Fujii T. Ion attachment mass spectrometry for environmental analysis. In: Gauglitz G, Moore DS, editors. Handbook of spectroscopy, 2nd edn vol 3. London: Wiley-VCH;2014. pp. 1287–312.

    Google Scholar 

  21. Selvin PC, Fujii T. Lithium ion attachment mass spectrometry: Instrumentation and Features. Rev Sci Instrum. 2001;72:2248–52.

    CAS  Google Scholar 

  22. Bach HT, Meyer BA, Tuggle DG. Role of molecular diffusion in the theory of gas flow through crimped-capillary leaks. J Vac Sci Tech. 2003;A 21:806–13.

    Google Scholar 

  23. Miguel AH, Natusch DFS. Diffusion cell for the preparation of dilute vapor concentrations. Anal Chem. 1975;47:1705–7.

    CAS  Google Scholar 

  24. Altshuller AP, Cohen IR. Application of diffusion cells to the production of known concentrations of gaseous hydrocarbons. Anal Chem. 1960;32:802–10.

    CAS  Google Scholar 

  25. Scaringelli FP, O’Keeffe AE, Rosenberg E, Bell JP. Preparation of known concentrations of gases and vapors with permeation devices calibrated gravimetrically. Anal Chem. 1970;42:871–6.

    CAS  Google Scholar 

  26. Fujii T, Selvin PC, Sablier M, Iwase K. Lithium ion attachment mass spectrometry for on-line analysis of trace components in air: direct introduction. Int J Mass Spectrom. 2001;209:39–45.

    CAS  Google Scholar 

  27. Chan KC, Tse RS, Wong SC. A temperature programmed fractionation inlet system for mass spectrometers. Anal Chem. 1982;54:1238–40.

    CAS  Google Scholar 

  28. Yuen HK, Mappes GW, Grote WA. An automated system for simultaneous thermal analysis and mass spectrometry. Thermochim Acta. 1982;52:143–53.

    CAS  Google Scholar 

  29. Materazzi S, Gentili A, Curini R. Applications of evolved gas analysis part 2: EGA by mass spectrometry. Talanta. 2006;69:781–94.

    CAS  PubMed  Google Scholar 

  30. Brown ME. Introduction to thermal analysis:techniques and applications. New York: Kluwer Academic Publishers; 2004. p. 264.

    Google Scholar 

  31. Blewett JP, Jones E. Filament sources of positive ions. Phys Rev. 1936;50:464–8.

    CAS  Google Scholar 

  32. Fujii T, Ohta M. Filament thermionic sources of Li+ ions in low heating power. J Phys D: Appl Phys. 1995;28:1268–72.

    Google Scholar 

  33. C & V Technix Co., Ltd. http://c-vtechnix.com/. Accessed 14 April 2015.

  34. Arulmozhiraja S, Fujii T. Li+ ion affinities of global-warming perfluorocarbons. J Phys Chem. 2000;104:9613–8.

    CAS  Google Scholar 

  35. Aue DH, Bowers MT. Stabilities of positive ions from equilibrium gas-phase basicity measurements. In: Bowers MT, editor. Gas phase ion chemistry. Vol. 2. New York: Academic Press; 1979. pp 1–51.

    Google Scholar 

  36. Parsons AW. An introduction to free radical chemistry. New Jersey: Wiley; 2000. p. 252.

    Google Scholar 

  37. Alfassi ZB. General aspects of the chemistry of radicals (the chemistry of free radicals). New Jersey: Wiley; 1999. p. 578.

    Google Scholar 

  38. Sugden TM, Ashmore PG, Dainton FS. Photochemistry and reaction kinetics. Cambridge: Cambridge University Press; 2010. p. 404.

    Google Scholar 

  39. Smith BC. Fundamentals of fourier transform infrared spectroscopy. 2nd ed. Boca Raton: CRC Press; 2011. p. 207.

    Google Scholar 

  40. Rieger PH. Electron spin resonance: analysis and interpretation. Cambridge: Royal Society of Chemistry; 2007. p. 173.

    Google Scholar 

  41. Slichter CP. Principles of magnetic resonance (Springer series in solid-state sciences 1). Berlin: Springer; 1996. p. 658

    Google Scholar 

  42. Kojima H, Toyoda H, Sugai H. Observation of CH2 radical and comparison with CH3 radical in a RF methane discharge. Appl Phys Lett. 1989;55:1292–94.

    CAS  Google Scholar 

  43. Herzberg G. The spectra and structures of simple free radicals: an introduction to molecular spectroscopy. New York: Dover Publications; 2012. p. 240.

    Google Scholar 

  44. McEwen CN. Radicals in analytical mass spectrometry. Mass Spectrom Rev. 1986;5:521–47.

    CAS  Google Scholar 

  45. Jones ITN, Bayes KD. Detection of steady-state free-radical concentrations by photoionization. J Am Chem Soc. 1972;94:6869–71.

    CAS  Google Scholar 

  46. Fujii T, Syouji K. Identifications of intermediate radicals in the CH4 microwave plasma by Li+ ion attachment method. Phys Rev A. 1992;46:3555–7.

    CAS  PubMed  Google Scholar 

  47. Fujii T, Syouji K. Mass spectrometric detections of neutral radicals in CH4 microwave discharge by usage of Li+ ion attachment techniques. J Appl Phys. 1993;74:3009–12.

    CAS  Google Scholar 

  48. Fujii T. Neutral product analysis of the microwave C2H2 plasma: Cn, CnH2, CnH3, CnH4, CnH5 and larger species. J Appl Phys. 1997;82:2056–9.

    CAS  Google Scholar 

  49. Fujii T. Diagnostics of microwave plasmas of C2H2: mass spectrometric investigations of ionic and neutral species. Phys Rev E. 1998;58:6495–02.

    CAS  Google Scholar 

  50. Fujii T, Kim HS. The mass spectrometric analysis of the neutral products of MW C2H4 plasma: carbon carbenes and aromatic compounds. Chem Phys Lett. 1997;268:229–34.

    CAS  Google Scholar 

  51. Sablier M, Iwase K, Sato G, Fujii T. Generation and observation of CHF2, CF2, and CF3 in a CF4/He microwave discharge system: a mass spectrometric method. Chem Phys Lett. 2005;409:342–8.

    CAS  Google Scholar 

  52. Fujii T, Syouji K. Mass spectrometric studies of the neutral and ionic products in a CH4/O2 microwave discharge plasma. J Phys Chem. 1993;97:11380–4.

    CAS  Google Scholar 

  53. Fujii T, Syouji K. Production of large O containing neutral hydrocarbon species by a CH4–o2 microwave discharge. Phys Rev E. 1994;49:657–62.

    CAS  Google Scholar 

  54. Kareev M, Sablier M, Fujii T. Diagnosis of a CH4/N2 microwave discharge: ionic and neutral species. J Phys Chem. 2000;104:7218–23.

    CAS  Google Scholar 

  55. Kushner MJ. On the balance between silylene and silyl radicals in rf glow discharges in silane: the effect on deposition of a-Si:H. J Appl Phys. 1987;62:2803–10.

    CAS  Google Scholar 

  56. Davies PB, Isaacs NA, Johnson SA, Resell DK. Detection of SiH(X 2) fundamental and hot band transitions by diode laser absorption spectroscopy. J Chem Phys. 1985;83:2060–3.

    CAS  Google Scholar 

  57. Rudolph RN, Moore JH. Plasma polymerization and a-C:H film ablation in microwave discharges in methane diluted with argon and hydrogen. Plasma Chem Plasma Process. 1990;10:451–71.

    CAS  Google Scholar 

  58. Wormhoudt J. Radical and molecular product concentration measurements in CF4 and CH4 radio frequency plasmas by infrared tunable diode laser absorption. J Vac Sci & Technol A. 1990;8:1722–5

    CAS  Google Scholar 

  59. Toyoda H, Kojima H, Sugai H. Mass spectroscopic investigation of the CH3 radicals in a methane rf discharge. Appl Phys Lett. 1989;54:1507–9.

    CAS  Google Scholar 

  60. Havens MR, Biolsi ME, Mayhan KG. Survey of low temperature r.f. plasma polymerization and processing. J Vac Sci Technol. 1976;13:575–84.

    CAS  Google Scholar 

  61. Kobayashi H, Shen M, Bell AT. The role of halogens in the plasma polymerization of hydrocarbons. J Macromol Sci Chem A. 1974;8:1345–60.

    Google Scholar 

  62. Kline LE, Partlow WD, Bies WE. Electron and chemical kinetics in methane rf glow-discharge deposition plasmas. J Appl Phys. 1989;65:70–8.

    CAS  Google Scholar 

  63. Radford HE, Evenson KM, Howard CJ. HO2 detected by laser magnetic resonance, J. Chem. Phys. 1974;60:3178–83.

    CAS  Google Scholar 

  64. Fridman A. Plasma Chemistry. London: Cambridge University Press; 2012. p. 1017

    Google Scholar 

  65. Angus JL, Hayman CC. Low pressure metastable growth of diamond and diamondlike phase. Science. 1988;241:913–21.

    CAS  PubMed  Google Scholar 

  66. Vasile MJ, Smolinsky G. The chemistry of radiofrequency discharges: acetylene and mixtures of acetylene with helium, argon and xenon. Int J Mass Spectrom Ion Phys. 1977;24:11–23.

    CAS  Google Scholar 

  67. Slovetsky DI. Mechanisms of decomposition of hydrocarbons in electrical discharges. Pure Appl Chem. 1988;60:753–68.

    Google Scholar 

  68. Smith AM, Agreiter J, Hartle M, Engel C, Bondybey VE. Rare gas matrix studies of absorption and fluorescence of reactive intermediates formed in discharges through acetylene. Chem Phys. 1994;189:315–34.

    CAS  Google Scholar 

  69. Franklin JL, Studniarz SA, Ghosh PK. Translational energy distribution of electrons and positive ions in the plasma of microwave and high frequency discharges of He, Ne, and Ar. J Appl Phys. 1968;39:2052–61.

    Google Scholar 

  70. Atkinson R, Baulch DL, Cox RA, Hampson RF Jr., Kerr JJ, Troe J. Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement III. J Phys Chem Ref Data. 1988;18:881–1097.

    Google Scholar 

  71. Lightfoot PD, Veyret B, Lesclaux R. Flash photolysis study of the methylperoxy + hydroperoxy reaction between 248 and 573 K. J Phys Chem. 1990, 94,708–14.

    CAS  Google Scholar 

  72. Grosser T, Hirsch A. Dicyanopolyynes: formation of new rod-shaped molecules in a carbon plasma. Angew Chem Int Ed Engl. 1993;32:1340–42.

    Google Scholar 

  73. Niu C, Lu YZ, Lieber CM. Experimental realization of the covalent solid carbon nitride. Science. 1993;261:334–7.

    CAS  PubMed  Google Scholar 

  74. Fujii T, Kareev M. Diagnostic studies of a CH4/H2 microwave plasma by mass spectrometry: ionic and neutral species, J Phys Chem A. 2001;105:4923–27.

    CAS  Google Scholar 

  75. Harris SJ, Goodwin DG. Growth on the reconstructed diamond (100) surface, J Phys Chem. 1993;97:23–28.

    CAS  Google Scholar 

  76. Selvin PC, Iwase K, Fujii T. Mass spectrometric analysis of ionic and neutral species produced in an N2/O2 microwave discharge plasma. J Phys D: Appl Phys. 2002;35:675–9.

    CAS  Google Scholar 

  77. Selvin PC, Iwase K, Fujii T. Determination of the ionic and neutral chemical components of an H2O microwave discharge plasma. Chem Phys Lett. 2002;360:367–73.

    Google Scholar 

  78. Fujii T, Iijima S, Iwase I. Mass spectrometric detection of H2O2H+: a CH4/O2 microwave discharge plasma. Chem Phys Lett. 2001;341:513–7.

    CAS  Google Scholar 

  79. Fujii T, Iijima S, Iwase K, Arulmozhiraja S. The production of H2O2 in the microwave discharge plasma of CH4/O2. J Phys Chem A. 2001;105:10089–2.

    CAS  Google Scholar 

  80. Wagner J, Wild Ch, Pohl F, Koidl P. Optical studies of hydrogenated amorphous carbon plasma deposition. Appl Phys Lett. 1986;48:106–8.

    CAS  Google Scholar 

  81. Mitomo T, Ohta T, Kondoh E, Ohtsuka K. An investigation of product distributions in microwave plasma for diamond growth. J Appl Phys. 1991;70:4532–39.

    CAS  Google Scholar 

  82. Raiche A, Jeffries JB. Laser-induced fluorescence temperature measurements in a dc-arcjet used for diamond deposition. Appl Opt. 1993;32:4629–35.

    CAS  PubMed  Google Scholar 

  83. Celii FG, Pehrsson PE, Wang H. –t, Butler JE. Infrared detection of gaseous species during the filament-assisted growth of diamond. Appl Phys Lett. 1988;52:2043–5.

    CAS  Google Scholar 

  84. Stadler KR, Homsi W. Mass spectroscopic investigations of a hydrocarbon arcjet plasma operating under diamond deposition conditions. Appl Phys Lett. 1996;68:3710–2.

    Google Scholar 

  85. Harris SJ, Weiner AM, Perry TA. Measurement of stable species present during filament-assisted diamond growth. Appl Phys Lett. 1988;53:1605–7.

    CAS  Google Scholar 

  86. Celli PG, Butler JE. Hydrogen atom detection in the filament-assisted diamond deposition environment. Appl Phys Lett. 1989;54:1031–3.

    Google Scholar 

  87. Mitsuda Y, Tanaka Y, Yoshida Y. In situ emission and mass spectroscopic measurement of chemical species responsible for diamond growth in a microwave plasma jet. J Appl Phys. 1990;67:3604–08.

    CAS  Google Scholar 

  88. Goodwin DG. Simulations of high-rate diamond synthesis: methyl as growth species. Appl Phys Lett. 1991;59:277–9.

    CAS  Google Scholar 

  89. Brown RC, Roberts JT. Microstructure evolution in diamond CVD: computer simulations of 111 surface site formation on a growing diamond-100 surface. J Phys Chem B 2000;104:8420–9.

    CAS  Google Scholar 

  90. Cappelli MA, Paul PH. An investigation of diamond film deposition in a premixed oxyacetylene flame. J Appl Phys. 1990;67:2596–02.

    CAS  Google Scholar 

  91. Netto A, Frenklach M. Kinetic Monte Carlo simulations of CVD diamond growth-Interlay among growth, etching, and migration. Diam Relat Mater. 2005;14:1630–46.

    CAS  Google Scholar 

  92. Richley JC, Harvey JN, Ashfold MNR. CH2 group migration between H-Terminated 2 × 1 reconstructed {100} and {111} surfaces of diamond. J Phys Chem C. 2012;116:7810–16.

    CAS  Google Scholar 

  93. Fujii T, Kareev M. Mass spectrometric studies of a CH4/H2 microwave plasma under diamond deposition conditions. J Appl Phys. 2001;89:2543–6.

    CAS  Google Scholar 

  94. Chang S, Scattergood T, Aronowitz S, Flores J. Organic chemistry on titan. Rev Geophys Space Phys. 1979;17:1923–33.

    CAS  Google Scholar 

  95. Sagan C, Thompson WR, Khare BN. Titan: a laboratory for prebiological organic chemistry. Acc Chem Res. 1992;25:286–92.

    CAS  PubMed  Google Scholar 

  96. Kunde VG, Aiken AC, Hanel RA, Jennings DE, Maguire WC, Samuelson RE. C4H2, HC3N and C2N2 in Titan’s atmosphere. Nature. 1981;292:686–8.

    CAS  Google Scholar 

  97. Hanel R. et al. Infrared observations of the saturnian system from voyager 1. Science. 1981;212:192–200.

    CAS  PubMed  Google Scholar 

  98. Fujii T, Arai N. Analysis of N-containing hydrocarbon species produced by CH4/N2 microwave discarge. Astrophys J 1999;519:858–63.

    CAS  Google Scholar 

  99. Thompson WR, Henry TJ, Schwartz JMS, Khare BN, Sagan C. Plasma discharge in N2 + CH4 at low pressures: Experimental results and applications to Titan. Icarus. 1991;90:57–73.

    CAS  PubMed  Google Scholar 

  100. Crutzen PJ. The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Ann Rev Earth Planet Sci. 1979;7:443–72.

    CAS  Google Scholar 

  101. Beck JC, de Leeuw RF, Penkett S. The effect of aircraft emissions on tropospheric ozone in the northern hemisphere. Atmos Environ A. 1992;26:17–29.

    Google Scholar 

  102. Ehhalt DH, Rohrer F, Wahner A. Sources and distribution of NO in the upper troposphere at northern mid-latitudes. J Geophys Res. 1992;97:3725–38.

    CAS  Google Scholar 

  103. Johnson C, Henshaw J, McInnes G. Impact of aircraft and surface emissions of nitrogen oxides on tropospheric ozone and global warming. Nature. 1992;355:69–71.

    CAS  Google Scholar 

  104. Singh HB. Reactive nitrogen in the troposphere. Environ Sci Technol. 1987;21:320–7.

    CAS  PubMed  Google Scholar 

  105. Fujii T, Iwase K, Selvin PC. Observation of NOx Species in a N2/O2/H2O microwave discharge plasma: a laboratory simulation of Earth’s atmosphere. J Geophys Res Atmos. 2003;108:4148–51.

    Google Scholar 

  106. Folkins IA, Weinheimer AJ, Ridley BA, Walega JG, Anderson B, Collins JE, Sachse G, Pueschel RF, Blake DR. O3, NOy, and NOx/NOy in the upper troposphere of the equatorial pacific. J Geophys Res 1995;100:20913–26.

    CAS  Google Scholar 

  107. Eisele FL, McDaniel EW. Mass spectrometric study of tropospheric ions in the northeastern and southwestern United States. J Geophys Res. 1986;91:5183–8.

    CAS  Google Scholar 

  108. Suzuki Y, Nakano N, Suzuki K. Portable sick house syndrome gas monitoring system based on novel colorimetric reagents for the highly selective detection of formaldehyde. Environ Sci Technol. 2003, 37, 5695–700.

    CAS  PubMed  Google Scholar 

  109. Endecott BR, Sanders DC, Arvind K, Chaturvedi AK. Simultaneous gas chromatographic determination of four toxic gases generally present in combustion atmospheres. J Anal Toxicol. 1996, 20, 189–94.

    CAS  PubMed  Google Scholar 

  110. Ravishankara AR, Solomon S, Turnipseed AA, Warren RF. Atmospheric lifetimes of long-lived halogenated species. Science. 1993;259:194–9.

    CAS  PubMed  Google Scholar 

  111. Langan J, Maroulis J, Ridgeway R. Strategies for greenhouse gas reduction. Solid State Technol. 1996;39:115–22.

    CAS  Google Scholar 

  112. Zazzera L, Reagen W, Cheng A. Infrared study of process emissions during C3F8/O2 plasma cleaning of plasma enhanced chemical vapor deposition chambers. J Electrochem Soc. 1997;144:3597–601.

    CAS  Google Scholar 

  113. Gubner AE, Kohler U. FTIR spectroscopy for the analysis of selected exhaust gas flows in silicon technology. J Mol Struct. 1995;348:209–12.

    Google Scholar 

  114. Stoffels E, Stoffels WW, Tachibana K. Electron attachment mass spectrometry as a diagnostics for electronegative gases and plasmas. Rev Sci Instrum. 1998;69:116–22.

    CAS  Google Scholar 

  115. Stoffels W, Stoffels E, Tachibana K. Polymerization of fluorocarbons in reactive ion etching plasmas. J Vac Sci Technol A 1998;16:87–95.

    CAS  Google Scholar 

  116. Harnisch J, Borchers R, Fabian P, Maiss M. Tropospheric trends for CF4 and C2F6 since 1982 derived from SF6 dated stratospheric air, Geophys Res Lett. 1996;23:1099–102.

    Google Scholar 

  117. Fujii T, Arulmozhiraja S, Nakamura M, Shiokawa Y. Mass spectrometry for on-line monitoring of perfluoro compounds using Li + ion attachment techniques. Anal Chem. 2001;73:2937–40.

    CAS  PubMed  Google Scholar 

  118. Fujii T, Nakamura M. On-line monitoring of perfluoro compounds in exhaust gases during semiconductor manufacture: use of Li + ion attachment mass spectrometry. J Appl Phys. 2001;90:2180–4.

    CAS  Google Scholar 

  119. Helneder H, Korner H, Mitchell A, Schwerd M, Seidel U. Comparison of copper damascene and aluminum RIE metallization in BICMOS technology. Microelectron. Eng. 2001;55:257–68.

    CAS  Google Scholar 

  120. Lakshmanan SK, Gill WN. A novel model of hydrogen plasma assisted chemical vapor deposition of copper. Thin Solid Films. 1999;338:24–39.

    CAS  Google Scholar 

  121. Kim D, Wentorf RH, Gill WN. Low pressure chemically vapor deposited copper films for advanced device metallization. J Electrochem Soc. 1993;140:3273–9.

    CAS  Google Scholar 

  122. Dubois LH, Zegarski BR. Selectivity and copper chemical vapor deposition. J Electrochem Soc. 1992;139:3295–9.

    CAS  Google Scholar 

  123. Girolami GS, Jeffries PM, Dubois LH. Mechanistic studies of copper thin film growth from cui and cuii face β- Diketonates. J Am Chem Soc. 1993;115:1015–24.

    CAS  Google Scholar 

  124. Zheng B, Goldberg C, Eisenbraun ET, Liu J, Kaloyeros AE, Toscano PJ, Murarka SP, Loan JF, Sullivan J. In situ quadrupole mass spectroscopy studies of water and solvent coordination to Copper(II) β- Diketonate precursors: implications for the chemical vapor deposition of Copper. Mater Chem Phys. 1995;41:173–81.

    CAS  Google Scholar 

  125. Lakshmanan SK, Gills WN. Experiments on the plasma assisted chemical vapor deposition of copper. J Vac Sci Technol A 1998;16:2187–97.

    CAS  Google Scholar 

  126. Farkas J, Hampden-Smith MJ, Kodas TT. FTIR studies of the adsorption/desorption behavior of copper chemical vapor deposition precursors on Silica. 2. (1,1,1,5,5,5-Hexafluoroacetylacetonato)(2-butyne)copper(I). J Phys Chem. 1994;98:6763–70.

    CAS  Google Scholar 

  127. Pinkas J, Huffman JC, Baxter DV, Chisholm MH, Caulton KG. Mechanistic role of H2O and the ligand in the chemical vapor deposition of Cu, Cu2O, CuO, and Cu3N from bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)copper(II). Chem Mater. 1995;7:1589–96.

    CAS  Google Scholar 

  128. Naik MB, Gill WN, Wentorf RH, Reeves RR. CVD of Copper by using Copper (I) and Copper (II) β-Diketonates. Thin Solid Films. 1995;262:60–6.

    CAS  Google Scholar 

  129. Fujii T, Arulmozhiraja S, Nakamura N, Shiokawa Y. Detection of Cu(hfac)(tmvs) by ion attachment mass spectrometry. Chem Phys Lett. 2006;425:134–7.

    CAS  Google Scholar 

  130. Fujii T, Arulmozhiraja S, Nakamura M, Shiokawa Y. Chemistry of Cu deposition by Cu(hfac)(tmvs) monitored by Li + ion attachment mass Spectrometry. J Appl Phys. 2006;100:084912.

    Google Scholar 

  131. Arulmozhiraja S, Fujii T. Is the (hfac)Cu(I)-(tmvs) bond intrinsically weak? Molecular Phys. 2005;103:3293–8.

    CAS  Google Scholar 

  132. Durrant SF, Mota RP, Bica de Moraes MA. Relationships between the plasma environment and the composition and optical properties of plasma-polymerized thin films produced in rf discharges of C2H2-SF6 mixtures. J Appl Phys. 1992;71:448–55.

    CAS  Google Scholar 

  133. Pedersen JOP, Opansky BJ, Leone SR. Laboratory studies of low temperature reactions of C2H with C2H2 and implications for atmospheric models of Titan. J Phys Chem. 1993;97:6822–9.

    CAS  Google Scholar 

  134. Killian TC, Vrtilek JM, Goottlieb CA, Gottlieb EW, Thaddeus P. Laboratory detection of a second carbon chain carbene—Butatrienylidene H2CCCC. Astrophys J. 1990;365:L89–L92.

    CAS  Google Scholar 

  135. Benedikt J, Hecimovic A, Ellerweg D, von Keudell A. Quadrupole mass spectrometry of reactive plasmas. J Phys D: Appl Phys. 2012;45:403001 (23 pp).

    Google Scholar 

  136. Kobayashi H, Bell AT, Shen M. Plasma polymerization of saturated and unsaturated hydrocarbons. Macromolecules. 1974;7:277–83.

    CAS  Google Scholar 

  137. Gottlieb CA, Vrtilek JM, Gottlieb EW, Thaddeus P, Hjalmarson A. Laboratory detection of the C3H radical. Astrophys J. 1985;294:L55–8

    CAS  Google Scholar 

  138. Kaiser RI, Lee YT, Suits AG. Crossed beam reaction of C(3Pj) with C2H2(1S + g): observation of Tricarbon-Hydride C3H. J Chem Phys. 1995;103:10395–8.

    CAS  Google Scholar 

  139. Smith AM, Engel C, Thoma A, Schallmoser G, Wurfel BE, Bondybey VE. Tentative identification of C5N2 in rare gas matrices. Chem Phys. 1994;184:233–45.

    CAS  Google Scholar 

  140. Agreiter J, Smith AM, Bondybey, VE. Laser-induced fluorescence of matrix-isolated C6N2 + and of C8N2 +. Chem Phys Lett. 1995;241:317–27.

    CAS  Google Scholar 

  141. Fujii T. Analysis of products from a C2H2/N2 microwave discharge: new nitrile species. Chem Phys Lett. 1999;313:733–40.

    CAS  Google Scholar 

  142. Smith D. The ion chemistry of interstellar clouds. Chem Rev. 1992;92:1473–85.

    CAS  Google Scholar 

  143. Goede J., de Kanter FJJ, Bickelhaupt F. Investigations on doubly nitrogen- 1 5 labeled isocyanogen. (CNCN). J Am Chem Soc. 1991;113:6104–7.

    CAS  Google Scholar 

  144. Fomey D, Freivogel P, Fulara J, Maier JP. Electronic absorption spectra of cyano-substituted polyacetylene cations in neon matrices. J Chem Phys. 1995;102:1510–4.

    Google Scholar 

  145. Liu AY, Cohen ML. Prediction of new low compressibility solids. Science. 1989;245:841–2.

    CAS  PubMed  Google Scholar 

  146. Zhang Y, Zhou Z, Li H. Crystalline carbon nitride films formation by chemical vapour deposition. Appl Phys Lett. 1996;68:634–6.

    CAS  Google Scholar 

  147. Dawei W, Dejun F, Huaixi G, Zhihong Z, Xianquan M, Xiangjun, F. Structure and characteristics of C3N4 thin films prepared by rf plasma-enhanced chemical vapor deposition. Phys Rev B. 1997;56:4949–54

    CAS  Google Scholar 

  148. Fujii T, Muraki J, Arulmozhiraja A, Kareev M. Possible production of C3N4 in the microwave discharge of C2H2/N2. J Appl Phys. 2000;88:5592–6.

    CAS  Google Scholar 

  149. Fujii T, Selvin CP, Sablier M, Iwase K. Analysis of hydronitrogen species generated by a microwave discharge in (N2H4)/He. J Phys Chem A 2002;106:3102–5

    CAS  Google Scholar 

  150. Vaghjiani GL. Laser photolysis studies of hydrazine vapor: 193 and 222-nm H-atom primary quantum yields at 296 K, and the kinetics of H + N2H4 reaction over the temperature range 222–657 K. Int J Chem Kinet. 1995;27:777–90.

    CAS  Google Scholar 

  151. Schurath U, Schindler RN. The photolysis of hydrazine at 2062 A in the presence of ethylene. J Phys Chem. 1970;74:3188–94.

    CAS  Google Scholar 

  152. Arvis M, Devillers C, Gillois M, Curtat M. Isothermal flash photolysis of hydrazine. J Phys Chem. 1974;78:1356–60.

    CAS  Google Scholar 

  153. Willis C, Back RA. Di-imide: some physical and chemical properties, and the kinetics and stoichiometry of the gas-phase decomposition. Can J Chem. 1973;51:3605–19.

    CAS  Google Scholar 

  154. Nagapal R, Garscadden A. Dissociation of hydrogen in glow discharges in hydrogen-nitrogen mixtures. Chem Phys Lett. 1994;231:211–5.

    Google Scholar 

  155. Goldberg N, Holthausen MC, Hrusak J, Koch W, Schwarz H. Mass-Spectrometric and GAUSSIAN2 studies of the Diazene (HNNH) and Isodiazene (H2NN) molecules and their radical cations. Chem Ber. 1993;126:2753–8.

    CAS  Google Scholar 

  156. Sylwester AP, Dervan PB. Low-temperature matrix isolation of the 1,1-diazene H2NN. Electronic and infrared characterization. J Am Chem Soc. 1984;106:4648–50.

    CAS  Google Scholar 

  157. Fujii T, Iwase K, Selvin PC. Mass spectrometric analysis of a N2/H2 microwave discharge plasma. Int J Mass Spectrom. 2002;216:169–75.

    CAS  Google Scholar 

  158. Fu Y, Tyrrell J. Ab initio investigation of the structure, vibrational frequencies, and intensities of HNnH, HNnF, and FNnF (n = 3, 4). J Phys Chem. 1995;99:1909–12.

    CAS  Google Scholar 

  159. Walder R, Franklin JL. Proton affinities of neutral molecules. Int J Mass Spectrom Ion Phys. 1980;36:85–112.

    CAS  Google Scholar 

  160. Roychowdhury S, Roychowdhury UK, Venugopalan M. Effect of heating on dissociation of water vapor in high-frequency plasmas and formation of hydrogen peroxide in a cold trap downstream of the plasma plasma chem. Plasma Process. 1982,2:157–66.

    CAS  Google Scholar 

  161. Bufalini JJ, Gay BW Jr, Brubaker KL. Hydrogen peroxide formation from formaldehyde photooxidation and its presence in urban atmospheres. Environ Sci Technol. 1972;6:816–21.

    CAS  Google Scholar 

  162. Thiel WR. New routes to hydrogen peroxide: alternatives for established processes? Angew Chem Int Ed Engl. 1999;38:3157–8.

    CAS  PubMed  Google Scholar 

  163. Fujii T, Yashiro M, Tokiwa H. Proton and Li + cation Interactions with H2O3 and H2O/O2: ab Initio molecular orbital study. J Am Chem Soc. 1997;119:12280–4.

    CAS  Google Scholar 

  164. Giguere PA, Herman K. Studies on hydrogen-oxygen systems in the electrical discharge. IV. Canad J Chem. 1970, 48, 3473–82.

    CAS  Google Scholar 

  165. Gonzalez C, Theisen, J., Schlegel, H. B, Hase WL, Kaiser EW. Kinetics of the reaction between hydroxyl and hydroperoxo on the triplet potential energy surface. J Phys Chem. 1992;96:1767–74.

    CAS  Google Scholar 

  166. Koller J, Plesnicar B. Mechanism of the participation of water in the decomposition of hydrogen trioxide (HOOOH). A theoretical study. J Am Chem Soc. 1996;118:2470–72.

    CAS  Google Scholar 

  167. Barnes JR. Directive 2002/95/EC of the European parliament and of the council of 27 january 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off J Eur Union. 2003;46:L37/19–23.

    Google Scholar 

  168. Environmental risk evaluation report: Decabromodiphenyl ether, Environment Agency, UK, 2009; p. 282 https://www.gov.uk/government/organisations/environment-agency. Accessed 15 April 2015.

  169. The International Electrotechnical Commission (IEC); http://www.iec.ch/. Accessed 15 April 2015.

  170. Samsonek J, Puype J, Uype F, YPE F, Vit DD. Rapid determination of certain BFRs in plastics by X-ray fluorescence spectrometry (XRF) and thermal desorption GC-MS (TD-GC-MS) for the RoHS directive. Organohalogen Compd. 2007;69:2789–92.

    Google Scholar 

  171. Guerra P, De La Torre A, Martinez MA, Eljarrat E, Barcelo D. Identification and trace level determination of brominated flame retardants by liquid chromatography/quadrupole linear ion trap mass spectrometry. Rapid Commun Mass Spectrom. 2008;27:916–24.

    Google Scholar 

  172. Wang D, Atkinson S, Hoover-Miller A, Shelver WL, Li QX. Simultaneous use of gas chromatography/ion trap mass spectrometry—electron capture detection to improve the analysis of bromodiphenyl ethers in biological and environmental samples. Rapid Commun Mass Spectrom. 2008;22:647–56.

    CAS  PubMed  Google Scholar 

  173. Dirtu AC, Ravindra K, Roosens L, Van Grieken R, Neels H, Blust R, Covaci A. Fast analysis of decabrominated diphenyl ether using low pressure gas chromatography-electron-capture negative ionization mass spectrometry. J Chromatog A. 2008;1186:295–301.

    CAS  Google Scholar 

  174. Li Y, Wang T, Hashi Y, Li H, Lin JM. Determination of brominated flame retardants in electrical and electronic equipments with microwave-assisted extraction and gas chromatography-mass spectrometry. Talanta. 2009;78:1429–35.

    CAS  PubMed  Google Scholar 

  175. Oppermann U, Schram J, Felkel D. Improved background compensation in atomic absorption spectrometry using the high speed self reversal method. Spectrochim Acta B. 2003;58:1567–72.

    Google Scholar 

  176. Kikuchi S, Kawauchi K, Ooki S, Kurosawa M, Honjho H, Yagishita T. Non-destructive rapid analysis of brominated flame retardants in electrical and electronic equipment using Raman spectroscopy. Anal Sci. 2004;20:1111–2.

    CAS  PubMed  Google Scholar 

  177. Sato Y, Oki M, Kondo A, Takenaka M, Satake H. Rapid analysis of polybrominated diphenyl ethers by ion attachment mass spectrometry. Anal Methods. 2010, 2:701–6.

    CAS  Google Scholar 

  178. Maruyama H, Homma K, Wada A, Shiokawa Y. The rapid analysis of PBDEs (poly brominated diphenyl ethers) utilizing the ion attachment mass spectrometry. Organohalogen Compd. 2007; 69:2767–68.

    Google Scholar 

  179. As for Sep. 2014, IEC technical committee 111 http://www.iec.ch111. Accessed 15 April 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Fujii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fujii, T. (2015). Applications of Association Reactions in the Gas Phase. In: Fujii, T. (eds) Ion/Molecule Attachment Reactions: Mass Spectrometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7588-1_5

Download citation

Publish with us

Policies and ethics