Skip to main content

Imaging Techniques for the Diagnosis of Spondylolisthesis

  • Chapter

Abstract

This chapter reviews the imaging techniques used in the evaluation of spondylolisthesis. Available modalities include radiography, magnetic resonance imaging (MRI), computed tomography, and scintigraphy. Optimal utilization of these techniques can result in an accurate assessment with little or no risk to the patient. The strengths of each modality will be discussed along with the limitations so that the reader can gain a sense of how to proceed with the diagnostic workup. The diagnosis of spondylolisthesis is usually first made on radiography which may or may not be performed with the specific diagnosis in mind. The severity of disease can be established and stability can be assessed. MRI is usually the next step if more information is needed regarding spinal canal or neural foraminal compromise. Computed tomography yields superior visualization of bone detail, particularly useful in the diagnosis of spondylolysis. Scintigraphy depicts metabolic changes in areas of bone turnover. Examples of findings in each modality in cases of spondylolisthesis will be provided, along with a discussion of the differences in imaging findings in spondylolisthesis according to the etiology of disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AP:

Anteroposterior

CAT:

Computed axial tomography

CBCT:

Cone beam computed tomography

CT:

Computed tomography

EM:

Electromagnetic

H E :

Effective dose

ICRP:

International Commission on Radiological Protection

kVp:

Peak kilovoltage

LSA:

Lumbosacral angle

mA:

Milliampere

mAs:

Milliamperes × seconds

MRI:

Magnetic resonance imaging

mSv:

Millisievert

PA:

Posteroanterior

PD:

Proton-density

PET:

Positron-emission tomography

PI:

Pelvic index

SI:

Sacral inclination

SPECT:

Single-photon emission computed to-mography

STIR:

Short-tau inversion recovery

T1W:

T1-weighted

T2W:

T2-weighted

UV:

Ultraviolet

References

  1. American College of Radiology. ACR Appropriateness Criteria®-low back pain radiographs; 2013. http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/LowBackPain.pdf. Accessed 23 July 2013.

  2. Iguchi T, Wakami T, Kurihara A, Kasahara K, Yoshiya S, Nishida K. Lumbar multilevel degenerative spondylolisthesis: radiological evaluation and factors related to anterolisthesis and retrolisthesis. J Spinal Disord Tech. 2002;5(2):93–9.

    Article  Google Scholar 

  3. Meyerding HW. Spondylolisthesis. Surg Gynecol Obstet. 1932;54:371–7.

    Google Scholar 

  4. Taillard W. Le spondylolisthesis chez l’enfant et l’adolescent. Acta Orthop Scand. 1954;24(1–40):115–44.

    Article  CAS  PubMed  Google Scholar 

  5. Timon SJ, Gardner MJ, Wanich T, Poynton A, Pigeon R, Widmann RF, Rawlins BA, Burke SW. Not all spondylolisthesis grading instruments are reliable. Clin Orthop Relat Res. 2005;434:157–62.

    Article  PubMed  Google Scholar 

  6. Vialle R, Schmit P, Dauzac C, Wicart P, Glorion C, Guigui P. Radiological assessment of lumbosacral dystrophic changes in high-grade spondylolisthesis. Skeletal Radiol. 2005;34(9):528–35.

    Article  PubMed  Google Scholar 

  7. Butler D, Trafimow JH, Andersson GBJ, McNeill TW, Huckman MS. Discs degenerate before facets. Spine. 1990;15(2):111–3.

    Article  CAS  PubMed  Google Scholar 

  8. Herkowitz HN. Spine update: degenerative spondylolisthesis. Spine. 1995;20(9):1084–90.

    Article  CAS  PubMed  Google Scholar 

  9. Fisk JR, Moe JH, Winter RB. Scoliosis, spondylolysis, and spondylolisthesis. Their relationship as reviewed in 539 patients. Spine (Phila Pa 1976). 1978;3(3):234–45.

    Article  CAS  Google Scholar 

  10. Toyone T, Tanaka T, Kato D, Kaneyama R, Otsuka M. Anatomic changes in lateral spondylolisthesis associated with adult lumbar scoliosis. Spine (Phila Pa 1976). 2005;30(22):E671–5.

    Article  Google Scholar 

  11. Talangbayan LE. The inverted Napoleon’s hat sign. Radiology. 2007;243(2):603–4.

    Article  PubMed  Google Scholar 

  12. Ravichandran G. A radiologic sign in spondylolisthesis. AJR Am J Roentgenol. 1980;134(1):113–7.

    Article  CAS  PubMed  Google Scholar 

  13. Maldague BE, Malghem JJ. Unilateral arch hypertrophy with spinous process tilt: a sign of arch deficiency. Radiology. 1976;121(3 Pt. 1):567–74.

    Article  CAS  PubMed  Google Scholar 

  14. Schwab FJ, Farcy JP, Roye Jr DP. The sagittal pelvic tilt index as a criterion in the evaluation of spondylolisthesis. Preliminary observations. Spine (Phila Pa 1976). 1997;22(14):1661–7.

    Article  CAS  Google Scholar 

  15. Dubousset J. Treatment of spondylolysis and spondylolisthesis in children and adolescents. Clin Orthop Relat Res. 1997;337:77–85.

    Article  PubMed  Google Scholar 

  16. Curylo LJ, Edwards C, DeWald RW. Radiographic markers in spondyloptosis: implications for spondylolisthesis progression. Spine (Phila Pa 1976). 2002;27(18):2021–5.

    Article  Google Scholar 

  17. Kälebo P, Kadziolka R, Swärd L, Zachrisson BE. Stress views in the comparative assessment of spondylolytic spondylolisthesis. Skeletal Radiol. 1989;17(8):570–5.

    Article  PubMed  Google Scholar 

  18. Putto E, Tallroth K. Extension-flexion radiographs for motion studies of the lumbar spine. A comparison of two methods. Spine (Phila Pa 1976). 1990;15(2):107–10.

    Article  CAS  Google Scholar 

  19. Leone A, Guglielmi G, Cassar-Pullicino VN, Bonomo L. Lumbar intervertebral instability: a review. Radiology. 2007;245(1):62–77.

    Article  PubMed  Google Scholar 

  20. Maus T. Imaging of the spine and nerve roots. Phys Med Rehabil Clin N Am. 2002;13:487–544.

    Article  PubMed  Google Scholar 

  21. Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P. Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol. 2012;199(5 Suppl):S78–86.

    Article  PubMed  Google Scholar 

  22. Zukotynski K, Curtis C, Grant FD, Micheli L, Treves ST. The value of SPECT in the detection of stress injury to the pars interarticularis in patients with low back pain. J Orthop Surg Res. 2010;5:13.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lim R, Fahey FH, Drubach LA, Connolly LP, Treves ST. Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop. 2007;27(3):277–82. PMID: 17414009.

    Article  PubMed  Google Scholar 

  24. Wiltse LL, Newman PH, Macnab I. Classification of spondylolisis and spondylolisthesis. Clin Orthop Relat Res. 1976;117:23–9.

    PubMed  Google Scholar 

  25. Roche MB, Rowe GG. The incidence of separate neural arch and coincident bone variations; a survey of 4,200 skeletons. Anat Rec. 1951;109(2):233–52.

    Article  CAS  PubMed  Google Scholar 

  26. Paajanen H, Tertti M. Association of incipient disc degeneration and instability in spondylolisthesis. A magnetic resonance and flexion-extension radiographic study of 20-year-old low back pain patients. Arch Orthop Trauma Surg. 1991;111(1):16–9.

    Article  CAS  PubMed  Google Scholar 

  27. Rossi F, Dragoni S. The prevalence of spondylolysis and spondylolisthesis in symptomatic elite athletes: radiographic findings. Radiography. 2001;7(1):37–42.

    Article  Google Scholar 

  28. Amato M, Totty WG, Gilula LA. Spondylolysis of the lumbar spine: demonstration of defects and laminal fragmentation. Radiology. 1984;153(3):627–9.

    Article  CAS  PubMed  Google Scholar 

  29. Libson E, Bloom RA, Dinari G. Symptomatic and asymptomatic spondylolysis and spondylolisthesis in young adults. Int Orthop. 1982;6(4):259–61.

    CAS  PubMed  Google Scholar 

  30. Ulmer JL, Elster AD, Mathews VP, King JC. Distinction between degenerative and isthmic spondylolisthesis on sagittal MR images: importance of increased anteroposterior diameter of the spinal canal (“wide canal sign”). AJR Am J Roentgenol. 1994;163(2):411–6.

    Article  CAS  PubMed  Google Scholar 

  31. Hollenberg GM, Beattie PF, Meyers SP, Weinberg EP, Adams MJ. Stress reactions of the lumbar pars interarticularis: the development of a new MRI classification system. Spine (Phila Pa 1976). 2002;27(2):181–6.

    Article  Google Scholar 

  32. Leone A, Cianfoni A, Cerase A, Magarelli N, Bonomo L. Lumbar spondylolysis: a review. Skeletal Radiol. 2011;40(6):683–700.

    Article  PubMed  Google Scholar 

  33. Yamaguchi Jr KT, Skaggs DL, Acevedo DC, Myung KS, Choi P, Andras L. Spondylolysis is frequently missed by MRI in adolescents with back pain. J Child Orthop. 2012;6(3):237–40.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Hession PR, Butt WP. Imaging of spondylolysis and spondylolisthesis. Eur Radiol. 1996;6(3):284–90.

    Article  CAS  PubMed  Google Scholar 

  35. Love TW, Fagan AB, Fraser RD. Degenerative spondylolisthesis: developmental or acquired? J Bone Joint Sur Br. 1999;81-B(4):670–4.

    Article  Google Scholar 

  36. Sienkiewicz PJ, Flatley TJ. Postoperative spondylolisthesis. Clin Orthop Relat Res. 1987;221:172–80.

    PubMed  Google Scholar 

  37. National Council on Radiation Protection and Measurements. Ionizing radiation exposure of the population of the United States. NCRP Report No. 160. Bethesda, MD: National Council on Radiation Protection and Measurements; 2009.

    Google Scholar 

  38. Brenner DJ, Elliston CD, Hall EJ, Berdon WE. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176:289–96.

    Article  CAS  PubMed  Google Scholar 

  39. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, Berrington de Gonza’lez A, Miglioretti DL. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169:2078–86.

    Article  PubMed  Google Scholar 

  40. Image Gently Web site. http://www.imagegently.org/. Accessed 19 Aug 2013.

  41. Image Wisely Web site. http://www.imagewisely.org/ Accessed 19 Aug 2013.

  42. 1990 Recommendations of the International Commission on Radiological Protection. ICRP publication 60. Ann ICRP. 1991;21(1–3):1–201.

    Google Scholar 

  43. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37(2–4):1–332.

    Google Scholar 

  44. Martin CJ. Effective dose: how should it be applied to medical exposures? Br J Radiol. 2007;80:639–47.

    Article  CAS  PubMed  Google Scholar 

  45. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. UNSCEAR 2008 Report to the General Assembly with Scientific Annexes. New York: United Nations; 2010.

    Google Scholar 

  46. Simpson AK, Whang PG, Jonisch A, Haims A, Grauer JN. The radiation exposure associated with cervical and lumbar spine radiographs. J Spinal Disord Tech. 2008;21:409–12.

    Article  PubMed  Google Scholar 

  47. Hansen J, Joric AG, Fiirgaard B, Egund N. Optimisation of scoliosis examination in children. Pediatr Radiol. 2003;33:752–65.

    Article  PubMed  Google Scholar 

  48. Gialousis G, Yiakoumakis EN, Makri TK, Papadoupoulou D, Karlatira M, Karaisakos P, Papaodysseas S, Evlogias N, Dimitriou PA, Georgiou EK. Comparison of dose from radiological examination for scoliosis in children among two pediatric hospitals by Monte Carlo simulation. Health Phys. 2008;94:471–8.

    Article  CAS  PubMed  Google Scholar 

  49. Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  50. Mettler Jr FA, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254–63.

    Article  PubMed  Google Scholar 

  51. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard J, Saini S. Strategies for CT radiation dose optimization. Radiology. 2004;230:619–28.

    Article  PubMed  Google Scholar 

  52. Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol. 2010;194:191–9.

    Article  PubMed  Google Scholar 

  53. Biswas D, Bible JE, Bohan M, Simpson AK, Whang PG, Grauer JN. Radiation exposure from musculoskeletal computerized tomographic exams. J Bone Joint Surg Am. 2009;91:1882–9.

    Article  PubMed  Google Scholar 

  54. Richards PJ, Goerge J, Metelko M, Brown M. Spine computed tomography doses and cancer induction. Spine. 2010;35:430–3.

    Article  PubMed  Google Scholar 

  55. Kasim AK, Overgaard A, Maly P, Ohlin A, Gunnarsson M, Sundgren PC. Low-dose helical computed tomography (CT) in the perioperative workup of adolescent idiopathic scoliosis. Eur Radiol. 2009;19:610–8.

    Article  Google Scholar 

  56. ACR-SPR practice guideline for the performance of skeletal scintigraphy (bone scan). American College of Radiology; 2012.

    Google Scholar 

  57. Lange J, Karellas A, Street J, Eck JC, Lapinsky A, Connolly PJ, DiPaola CP. Estimating the effective radiation dose imparted to patients by intraoperative cone-beam computed tomography in thoracolumbar spinal surgery. Spine. 2013;38:E306–12.

    Article  PubMed  Google Scholar 

  58. Kraus MD, Krischak G, Keppler P, Gebhard FT, Schuetz UHW. Can computer-assisted surgery reduce the effective dose for spinal fusion and sacroiliac screw insertion? Clin Orthop Relat Res. 2010;468:2419–29.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Slomczykowski M, Roberto M, Schneeberger P, Ozdoba C, Vock P. Radiation dose for pedicle screw insertion. Fluoroscopic method versus computer-assisted surgery. Spine. 1999;24:975–82.

    Article  CAS  PubMed  Google Scholar 

  60. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499–505.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly A. Thornhill M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thornhill, B.A., Green, D.J., Schoenfeld, A.H. (2015). Imaging Techniques for the Diagnosis of Spondylolisthesis. In: Wollowick, A., Sarwahi, V. (eds) Spondylolisthesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7575-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7575-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7574-4

  • Online ISBN: 978-1-4899-7575-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics