Skip to main content

Tablets and Other Solid Dosage Forms for Systemic Oral Mucosal Drug Delivery

  • Chapter
  • First Online:
  • 1516 Accesses

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

In recent years, interest in oral mucosal drug delivery has been growing rapidly due to the many advantages this route offers such as rapid onset of drug action and ability to bypass first-pass metabolism in the gastrointestinal (GI) tract and liver. With these advantages, however, there are also specific challenges with this route of administration such as reduced contact surface area between the drug solution and oral membrane and the small amount of solvent (saliva) that can be used to dissolve the drug; these challenges can limit the amount of drug absorbed. Despite these difficulties, a number of oral transmucosally delivered products have been developed and marketed that are more effective and sometimes safer than conventional dosage forms. Clinical studies that directly compare conventional dosage forms with oral transmucosally delivered products have shown that patients prefer the latter due to the aforementioned advantages. This chapter focuses on the formulation and performance of solid dosage forms commonly used in oral transmucosal delivery. Basic principles in oral transmucosal drug delivery have been presented and new developments have been discussed in depth. Examples of formulation technologies and clinical performance from successful and widely known oral transmucosally delivered products, such as Fentora®/Effentora®, Actiq®, Zydis ® Selegiline, and Commit® lozenge are presented together with comparisons to conventional dosage forms. Together, this body of data shows that oral transmucosal drug delivery is an attractive route of administration that is safe, effective, and convenient to the patient. In certain situations, for example, when the metabolites have undesirable side effects, oral transmucosal drug delivery can prove to be significantly safer than conventional routes of administration. New formulation strategies such as the use of permeation enhancers, effervescence agents, and dynamic pH variability are available that can favorably manipulate and direct drug delivery across the oral mucosa. Thus, there is large scope in the further development of strategies for oral transmucosal drug delivery; such a scope could be applied to hitherto unexplored molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Soderling E (1989) Practical aspects of salivary analyses. In: Tenovuo JO (ed) Human saliva: clinical chemistry and microbiology, vol I. CRC Press, Boca Raton

    Google Scholar 

  2. Birkhed D, Heintze U (1989) Salivary secretion rate, buffer capacity and pH. In: Tenovuo JO (ed) Human saliva: clinical chemistry and microbiology, vol I. CRC Press, Boca Raton

    Google Scholar 

  3. Batheja P, Thakur R, Michniak B (2007) Basic biopharmaceutics of buccal and sublingual absorptions. In: Touitou E, Barry BW (eds) Enhancement in drug delivery. CRC Press, Boca Raton

    Google Scholar 

  4. Abrams J (1987) Glyceryl trinitrate (nitroglycerin) and the organic nitrates. Choosing the method of administration. Drugs 34:391–403

    Article  CAS  PubMed  Google Scholar 

  5. Abrams J (1985) Pharmacology of nitroglycerin and long-acting nitrates. Am J Cardiol 56:12A–18A

    Article  CAS  PubMed  Google Scholar 

  6. Fung HL (1983) Pharmacokinetics of nitroglycerin and long-acting nitrates. Am J Med 72(Suppl):13–19

    Article  Google Scholar 

  7. Lehmann HU, Witt E, Trave P, Hochrein H (1982) Hemodynamic effects of oral synchron nitroglycerin in comparison to slow-release isosorbide dinitrate. In: Bussman W-D, Dries RR, Wagner W (eds) Controlled release nitroglycerin in buccal and oral form. Advances in pharmacology, vol I. Karger, Basel

    Google Scholar 

  8. Boden WE, Finn AV, Patel D, Peacock WF, Thadani U, Zimmerman FH (2012) Nitrates as an integral part of optimal medical therapy and cardiac rehabilitation for stable angina: review of current concepts and therapeutics. Clin Cardiol 35:263–271

    Article  PubMed  Google Scholar 

  9. Hilleman DE, Banakar UV (1992) Issues in contemporary drug delivery. Part VI: advanced cardiac drug formulations. J Pharm Technol 8:203–211

    CAS  PubMed  Google Scholar 

  10. Ekerhovd E, Bullarbo M (2008) Sublingual nitroglycerin seems to be effective in the management of retained placenta. Acta Obstet Gynecol 87:222–225

    Article  Google Scholar 

  11. Ryden L, Schaffrath R (1987) Buccal versus sublingual nitroglycerin administration in the treatment of angina pectoris: a multi-centre study. Eur Heart J 8:995–1001

    CAS  PubMed  Google Scholar 

  12. Thadani U, Fung HL, Darke AC, Parker JO (1982) Oral isosorbide dinitrate in angina pectoris: comparison of duration of action and dose response relationship during acute and sustained therapy. Am J Cardiol 49:411–417

    Article  CAS  PubMed  Google Scholar 

  13. Dalal JJ, Yao L, Parker JO (1983) Nitrate tolerance: influence of isosorbide dinitrate on the hemodynamic and antianginal effects of nitroglycerin. J Am Coll Cardiol 2:115–120

    Article  CAS  PubMed  Google Scholar 

  14. Parker JO (1987) Nitrate therapy in stable angina pectoris. N Engl J Med 316:1635–1642

    Article  CAS  PubMed  Google Scholar 

  15. Franciosa JA, Cohn JN (1980) Sustained hemodynamic effects without tolerance during long-term isosorbide dinitrate treatment in chronic left ventricular failure. Am J Cardiol 45:650–654

    Article  Google Scholar 

  16. Leier CV, Huss P, Magorien RD, Unverferth DV (1983) Improved exercise capacity and differing arterial and venuous tolerance during chronic isosorbide dinitrate therapy for congestive heart failure. Circulation 65:817–822

    Article  Google Scholar 

  17. Abrams J (1983) Nitroglycerin and long-acting nitrates in clinical practice. Am J Med 74(Suppl):85–94

    Article  CAS  PubMed  Google Scholar 

  18. Parker JO, VanKoughnett KA, Farrell B (1986) Nitroglycerin lingual spray: clinical efficacy and dose-response relation. Am J Cardiol 57:1–5

    Article  CAS  PubMed  Google Scholar 

  19. Lionetto L, Negro A, Casolla B, Simmaco M, Martelletti P (2012) Sumatriptan succinate: 20. Pharmacokinetics of different formulations in clinical practice. Expert Opin Pharmacother 13:2369–2380

    Article  CAS  PubMed  Google Scholar 

  20. Dahlof CG (2005) Non-oral formulations of triptans and their use in acute migraine. Curr Pain Headache Rep 9:206–212

    Article  PubMed  Google Scholar 

  21. Tfelt-Hansen P, Hougaard A (2013) Sumatriptan: a review of its pharmacokinetics, pharmacodynamics and efficacy in the acute treatment of migrane. Expert Opin Drug Metab Toxicol 9:91–103

    Article  CAS  PubMed  Google Scholar 

  22. Lipton RB, Hamelsky SW, Dayno JM (2002) What do patients with migraine want from acute migraine treatment? Headache 42(Suppl 1):3–9

    Article  PubMed  Google Scholar 

  23. Saxena PR, Tfelt-Hansen P (2006) Triptans, 5HT1B/1D agonists in the acute treatment of migraine. In: Olesen J, Goadsby PJ, Ramadan NM, Tfelt-Hansen P, KMA W (eds) The headaches, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 469–503

    Google Scholar 

  24. Ferrari MD, Goadsby PJ, Roon KI, Lipton RB (2002) Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials. Cephalalgia 22:633–658

    Article  CAS  PubMed  Google Scholar 

  25. Burstein R, Jakubowski M, Collins B (2004) Defeating migraine pain with triptans: a race against the development of cutaneous allodynia. Ann Neurol 55:19–26

    Article  CAS  PubMed  Google Scholar 

  26. Aurora SK, Barrodale PM, McDonald SA et al (2009) Revisiting the efficacy of sumatriptan therapy during the aura phase of migraine. Headache 49:1001–1004

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lacey LF, Hussey EK, Fowler PA (1995) Single dose pharmacokinetics of sumatriptan in healthy volunteers. Eur J Clin Pharmacol 47:543–548

    Article  CAS  PubMed  Google Scholar 

  28. Fuseau E, Petricoul O, Moore KH et al (2002) Clinical pharmacokinetics of intranasal sumatriptan. Clin Pharmacokinet 41:801–811

    Article  CAS  PubMed  Google Scholar 

  29. Dixon CM, Saynor DA, Andrew PD et al (1993) Disposition of sumatriptan in laboratory animals and humans. Drug Metab Dispos 21(5):761–769

    CAS  PubMed  Google Scholar 

  30. Fowler PA, Thomas M, Lacey LF et al (1989) Early studies with the novel 5-HT 1-like agonist GR43175 in healthy volunteers. Cephalalgia 9(Suppl 9):57–62

    PubMed  Google Scholar 

  31. Dechant KL, Clissold SP (1992) Sumatriptan. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in the acute treatment of migraine and cluster headache. Drugs 43:776–798

    Article  CAS  PubMed  Google Scholar 

  32. Dilone E, Bergstrom D, Cabana B (2009) Sumatriptan lingual spray study group. Rapid oral transmucosal absorption of sumatriptan, and pharmacodynamics in acute migraine. Headache 49:1445–1453

    Article  PubMed  Google Scholar 

  33. Tfelt-Hansen P, De Vries P, Saxena PR (2000) Triptans in migraine: a comparative review of pharmacology, pharmacokinetics and efficacy. Drugs 60:1259–1287

    Article  CAS  PubMed  Google Scholar 

  34. Pfaffenrath V, Cunin G, Sjonell G, Prendergast S (1998) Efficacy and safety of sumatriptan tablets (25 mg, 50 mg, and 100 mg) in the acute treatment of migraine: defining the optimum doses of oral sumatriptan. Headache 38:184–190

    Article  CAS  PubMed  Google Scholar 

  35. Walls C, Lewis A, Bullman J et al (2004) Pharmacokinetic profile of a new form of sumatriptan tablets in healthy volunteers. Curr Med Res Opin 20:803–809

    Article  CAS  PubMed  Google Scholar 

  36. Sheftell FD, Dahlof CG, Brandes JL et al (2005) Two replicate randomized, double-blind, placebo-controlled trials of the time to onset of pain relief in the acute treatment of migraine with a fast disintegrating/rapid-release formulation of sumatriptan tablets. Clin Ther 27:407–417

    Article  CAS  PubMed  Google Scholar 

  37. Newman LC, Cady RK, Landy S et al (2008) Treatment satisfaction and efficacy of the rapid release formulation of sumatriptan 100 mg tablets utilising an early intervention paradigm in patients previously unsatisfied with sumatriptan. Int J Clin Pract 62:1889–1899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Barbanti P, Carpay JA, Kwong WJ et al (2004) Effects of a fast disintegrating/rapid release oral formulation of sumatriptan on functional ability in patients with migraine. Curr Med Res Opin 20:2021–2029

    Article  CAS  PubMed  Google Scholar 

  39. Shidhaye SS, Saindane NS, Sutar S, Kadam V (2008) Mucoadhesive bilayered patches for administration of sumatriptan succinate. AAPS PharmSciTech 9:909–916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Shivanand K, Raju SA, Nizamuddin S, Jayakar B (2011) In vivo bioavailability studies of sumatriptan succinate buccal tablets. DARU 19:224–230

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Poston KL, Waters C (2007) Zydis selegiline in the management of Parkinson’s disease. Expert Opin Pharmacother 8:2615–2624

    Article  CAS  PubMed  Google Scholar 

  42. Seager H (1998) Drug-delivery products and the Zydis fast-dissolving dosage form. J Pharm Pharmacol 50:375–382

    Article  CAS  PubMed  Google Scholar 

  43. Riederer P, Lachenmayer L, Laux G (2004) Clinical applications of MAO-Inhibitors. Curr Med Chem 11:2033–2043

    Article  CAS  PubMed  Google Scholar 

  44. Clarke A, Brewer F, Johnson ES et al (2003) A new formulation of selegiline: improved bioavailability and selectivity for MAO-B inhibition. J Neural Trans 110:1241–1255

    Article  CAS  Google Scholar 

  45. Mahmood I (1997) Clinical pharmacokinetics and pharmacodynamics of selegiline. An update. Clin Pharmacokinet 33:91–102

    Article  CAS  PubMed  Google Scholar 

  46. Blackwell B, Mabbitt L (1965) Tyramine in cheese related to hypertensive crises after monoamine-oxidase inhibition. Lancet 285:938–940

    Article  Google Scholar 

  47. Hidestrand M, Oscarson M, Salonen JS et al (2001) CYP2B6 and CYP2C19 as the major enzymes responsible for the metabolism of selegiline, a drug used in the treatment of Parkinson’s disease, as revealed from experiments with recombinant enzymes. Drug Metabol Dispos 29:1480–1484

    CAS  Google Scholar 

  48. Clarke A, Johnson ES, Mallard N et al (2003) A new low-dose formulation of selegiline: clinical efficacy, patient preference and selectivity for MAO-B inhibition. J Neural Trans 110:1257–1271

    Article  CAS  Google Scholar 

  49. Waters CH, Sethi KD, Hauser RA et al (2004) Zydis selegiline reduces off time in Parkinson’s disease patients with motor fluctuations: a 3-month, randomized, placebo-controlled study. Mov Disord 19:426–432

    Article  PubMed  Google Scholar 

  50. Lew MF, Pahwa R, Leehey M et al (2007) Safety and efficacy of newly formulated selegiline orally disintegrating tablets as an adjunct to levodopa in the management of ‘off’ episodes in patients with Parkinson’s disease. Curr Med Res Opin 23:741–750

    Article  CAS  PubMed  Google Scholar 

  51. Ondo W (2006) Pooled analysis of two identical phase-III studies of a novel selegiline preparation as adjunctive therapy for Parkinson’s disease. Mov Disor Abstr First World Parkinson Congr 21(Suppl 13):S126

    Google Scholar 

  52. Fernandez HH, Chen JJ (2007) Monamine oxidase inhibitors: current and emerging agents for Parkinson disease. Clin Neuropharmacol 30:150–168

    Article  CAS  PubMed  Google Scholar 

  53. Mystakidou K, Katsouda E, Parpa E, Tsiatas ML, Vlahos L (2005) Oral transmucosal fentanyl citrate for the treatment of breakthrough pain in cancer patients: an overview of its pharmacological and clinical characteristics. Am J Hosp Palliat Care 22:228–232

    Article  PubMed  Google Scholar 

  54. Elsner F, Zeppetella G, Porta-Sales J, Tagarro I (2011) Newer generation fentanyl transmucosal products for breakthrough pain in opioid-tolerant cancer patients. Clin Drug Investig 31:605–618

    Article  CAS  PubMed  Google Scholar 

  55. Laverty D (2007) Actiq: an effective oral treatment for cancer-related breakthrough pain. Br J Community Nurs 12:311–316

    Article  PubMed  Google Scholar 

  56. Streisand JB, Varvel JR, Stanski DR et al (1991) Absorption and bioavailability of oral transmucosal fentanyl citrate. Anesthesiology 75:223–229

    Article  CAS  PubMed  Google Scholar 

  57. Streisand JB, Busch MA, Egan TD et al (1998) Dose proportionality and pharmacokinetics of oral transmucosal fentanyl citrate. Anesthesiology 88:305–309

    Article  CAS  PubMed  Google Scholar 

  58. Lee M, Kern SE, Kisicki JC et al (2003) A pharmacokinetic study to compare two simultaneous 400 µg doses with a single 800 µg dose of oral transmucosal fentanyl citrate. J Pain Symptom Manage 26:743–747

    Article  CAS  PubMed  Google Scholar 

  59. Portenoy RK, Payne R, Coluzzi P et al (1999) Oral transmucosal fentanyl citrate (ACTIQ) for the treatment of breakthrough pain in cancer patients. A controlled dose titration study. Pain 79:303–312

    Article  CAS  PubMed  Google Scholar 

  60. Christie JM, Simmonds M, Patt R et al (1998) Dose titration, multicenter study of oral transmucosal fentanyl citrate for the treatment of breakthrough pain in cancer patients using transdermal fentanyl for persistent pain. J Clin Oncol 16:3238–3245

    CAS  PubMed  Google Scholar 

  61. Farrar JT, Cleary J, Rauck R et al (1998) Oral transmucosal fentanyl citrate: randomized double-blinded, placebo-controlled trial for the treatment of breakthrough pain in cancer patients. J Nat Cancer Inst 90:611–616

    Article  CAS  PubMed  Google Scholar 

  62. Coluzzi PH, Schwartzberg L, Conroy JD Jr et al (2001) Breakthrough cancer pain: a randomized trial comparing oral transmucosal fentanyl citrate (OTFC) and morphine sulphate immediate release (MSIR). Pain 91:123–130

    Article  CAS  PubMed  Google Scholar 

  63. Payne R, Coluzzi P, Hart L et al (2001) Long term safety of oral transmucosal fentanyl citrate for breakthrough cancer pain. J Pain Symptom Manage 22:575–583

    Article  CAS  PubMed  Google Scholar 

  64. Burton AW, Driver LC, Mendoza TR et al (2004) Oral transmucosal fentanyl citrate in the outpatient management of severe cancer pain crises. A retrospective case series. Clin J Pain 20:195–197

    Article  PubMed  Google Scholar 

  65. Mystakidou K, Katsouda E, Parpa E, Vlahos L, Tsiatas ML (2006) Oral transmucosal fentanyl citrate: overview of pharmacological and clinical characteristics. Drug Deliv 13:269–276

    Article  CAS  PubMed  Google Scholar 

  66. Lichtor JL, Sevarino FB, Joshi GP et al (1999) The relative potency of oral transmucosal fentanyl citrate compared with intravenous morphine in the treatment of moderate to severe postoperative pain. Anesth Analg 89:732–738

    CAS  PubMed  Google Scholar 

  67. Sharar SR, Bratton SL, Carrougher GJ et al (1998) A comparison of oral transmucosal fentanyl citrate and oral hydromorphone for inpatient paediatric burn wound care analgesia. J Burn Care Rehabil 19:516–521

    Article  CAS  PubMed  Google Scholar 

  68. Sharar SR, Carrougher GJ, Selzer K et al (2002) A comparison of oral transmucosal fentanyl citrate and oral oxycodone for paediatric outpatient wound care. J Burn Care Rehabil 23:27–31

    Article  CAS  PubMed  Google Scholar 

  69. Schechter NL, Weisman SJ, Rosenblum M et al (1995) The use of oral transmucosal fentanyl citrate for painful procedures in children. Pediatrics 95:335–339

    CAS  PubMed  Google Scholar 

  70. Landy SH (2004) Oral transmucosal fentanyl citrate for the treatment of migraine headache pain in outpatients: a case series. Headache 44:762–766

    Article  PubMed  Google Scholar 

  71. Shaiova L, Wallenstein D (2004) Outpatient management of sickle cell pain with chronic opioid pharmacotherapy. J Natl Med Assoc 96:984–986

    PubMed Central  PubMed  Google Scholar 

  72. FENTORA® (fentanyl buccal tablet): US prescribing information. Frazezr (PA): Cephalon Inc. http://www.fentora.com/pdfs/pdf100_prescribing_info.pdf. Accessed 30 April 2013

  73. European Medicines Agency. Effentora 100 micrograms buccal tablets: summary of product characteristics. http://www.emea.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000833/WC500020930.pdf. Accessed 30 April 2013

  74. European Medicines Agency. Abstral® 100, 200, 300, 400, 600, 800 µg sublingual tablets: summary of product characteristics. http://emc.medicines.org.uk/document.aspx?documentId=21371. Accessed 30 April 2013

  75. ONSOLIS (fentanyl buccal soluble film): US prescribing information. Somerset (NJ): Meda Pharmaceuticals Ltd. http://www.onsolis.com/pdf/onsolis_pi.pdf. Accessed 30 April 2013

  76. Vasisht N, Gever LN, Tagarro I (2009) Formulation selection and pharmacokinetic comparison of fentanyl buccal soluble film with oral transmucosal fentanyl citrate: a randomized, open-label, single-dose, crossover study. Clin Drug Investig 29:647–654

    Article  CAS  PubMed  Google Scholar 

  77. Durfee S, Messina J, Khankari R (2006) Fentanyl effervescent buccal tablets. Am J Drug Deliv 4:1–5

    Article  CAS  Google Scholar 

  78. Hamed E, Durfee SL (2008) Oravescent drug delivery system: a novel technology for the transmucosal delivery of drugs. In: Rathbone MJ, Hadgraft J, Roberts MS, Lane ME (eds) Modified-release drug delivery technology, vol 1, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  79. Pather SI, Siebert JM, Hontz J, Khankari R, Kumbale R, Gupte S (2001) Enhanced buccal delivery of fentanyl using the Oravescent drug delivery system. Drug Dev Deliv 1:54–57

    CAS  Google Scholar 

  80. Darwish M, Kirby M, Robertson P, Tracewell W, Jiang JG (2007) Absolute and relative bioavailability of fentanyl buccal tablet and oral transmucosal fentanyl citrate. J Clin Pharmacol 47:343–350

    Article  CAS  PubMed  Google Scholar 

  81. Darwish M, Kirby M, Robertson P, Tracewell W, Jiang JG (2006) Comparative bioavailability of the novel fentnyl effervescent buccal tablet formulation: an open-label crossover study. Poster Presentation at the American Pain Society Annual Meeting, San Antonio, 3–6 May

    Google Scholar 

  82. Darwish M, Tempro K, Kirby M, Thompson J (2005) Pharmacokinetics and dose proportionality of fentanyl effervescent buccal tablets in healthy volunteers. Clin Pharmacokinet 44:1279–1286

    Article  CAS  PubMed  Google Scholar 

  83. Darwish M, Kirby M, Robertson P, Tracewell W, Jiang JG (2006) Pharmacokinetic properties of fentanyl effervescent buccal tablets: an open-label, crossover study in healthy adults. Poster Presentation at the American Academy of Pain Medicine Annual Meeting, San Diego, 22–25 Feb

    Google Scholar 

  84. Darwish M, Kirby M, Robertson P, Tracewell W, Jiang JG (2006) Pharmacokinetic properties of fentanyl effervescent buccal tablets: a phase I, open-label, crossover study of single-dose 100, 200, 400, and 800 microg in healthy adult volunteers. Clin Ther 28:707–714

    Article  CAS  PubMed  Google Scholar 

  85. Darwish M, Messina J, Tempro K (2005) Relative bioavailability and dose proportionality of a novel effervescent form of fentanyl in healthy volunteers. Poster Presentation at the American Society of Anesthesiologists Annual Meeting, Atlanta, 24 Oct

    Google Scholar 

  86. Portenoy R, Taylor D, Messina J, Tremmel L (2006) Fentanyl effervescent buccal tablets for relief of breakthrough pain in opioid-treated patients with cancer: a randomized, placebo-controlled study. Poster Presentation at the American Pain Society Annual Meeting, San Antonio, 3–6 May

    Google Scholar 

  87. Portenoy R, Taylor D, Messina J, Tremmel L (2006) A randomized, placebo controlled study of fentanyl buccal tablet for breakthrough pain in opioid treated patients with cancer. Clin J Pain 22:805–811

    Article  PubMed  Google Scholar 

  88. Blick SK, Wagstaff AJ (2006) Fentanyl buccal tablet: in breakthrough pain in opioid tolerant patients with cancer. Drugs 66:2387–2393

    Article  CAS  PubMed  Google Scholar 

  89. Stead LF, Perera R, Bullen C, Mant D, Hartmann-Boyce J, Cahill K, Lancaster T (2012) Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev. doi:10.1002/14651858.CD000146.pub4

    Google Scholar 

  90. Choi JH, Dresler CM, Norton MR, Strahs KR (2003) Pharmacokinetics of a nicotine polacrilex lozenge. Nicotine Tob Res 5:635–644

    Article  CAS  PubMed  Google Scholar 

  91. Nemeth-Coslett R, Benowitz NL, Robinson N, Henningfield JE (1988) Nicotine gum: chew rate, subjective effects and plasma nicotine. Pharmacol Biochem Behav 29:747–751

    Article  CAS  PubMed  Google Scholar 

  92. Shiffman S, Dresler CM, Hajek P, Gilburt SJ, Targett DA, Strahs KR (2002) Efficacy of a nicotine lozenge for smoking cessation. Arch Intern Med 162:1267–1276

    Article  CAS  PubMed  Google Scholar 

  93. Doherty K, Kinnunen T, Militello FS, Garvey AJ (1995) Urges to smoke during the first month of abstinence: relationship to relapse and predictors. Psychopharmacology (Berl) 119:171–178

    Article  CAS  Google Scholar 

  94. Shiffman S, Jarvik ME (1976) Smoking withdrawal symptoms in two weeks of abstinence. Psychopharmacology (Berl) 50:35–39

    Article  CAS  Google Scholar 

  95. Wallstrom M, Nilsson F, Hirsch JM (2000) A randomized, double-blind, placebo controlled clinical evaluation of a nicotine sublingual tablet in smoking cessation. Addiction 95:1161–1171

    Article  CAS  PubMed  Google Scholar 

  96. Molander L, Lunell E, Fagerstrom KO (2000) Reduction of tobacco withdrawal symptoms with a sublingual nicotine tablet: a placebo controlled study. Nicotine Tob Res 2:187–191

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar S. Rane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Rane, S., Moe, D. (2015). Tablets and Other Solid Dosage Forms for Systemic Oral Mucosal Drug Delivery. In: Rathbone, M., Senel, S., Pather, I. (eds) Oral Mucosal Drug Delivery and Therapy. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7558-4_8

Download citation

Publish with us

Policies and ethics