Skip to main content

Characterization Methods for Oral Mucosal Drug Delivery

  • Chapter
  • First Online:
Oral Mucosal Drug Delivery and Therapy

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Drug delivery across oral mucosal membranes has emerged as an excellent alternative for compounds that cannot be delivered orally. However, a standardized method to evaluate drug absorption across oral mucosal membranes, either in vitro or in vivo, still remains elusive. This chapter provides a comprehensive review of the current in vitro and in vivo methodologies employed in the literature for evaluating oral transmucosal absorption of compounds. The barrier function of oral mucosa along with the transport mechanisms is briefly reviewed. The methods to study drug absorption in vivo such as the buccal absorption test along with its refinements are discussed. In addition, a brief review of the present knowledge relating to various in vitro methods including the selection of suitable animal species, apparatus, and their limitations is given. Methods to test residence time, mucoadhesion, and drug release are also discussed in this chapter, together with a special emphasis on the use of buccal cell cultures as a means to study oral mucosal drug absorption. The need to conduct pharmacokinetic (PK) studies is also highlighted and discussed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Squier CA (1973) The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J Ultrastruct Res 43(1):160–177

    CAS  PubMed  Google Scholar 

  2. Collins LM, Dawes C (1987) The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J Dent Res 66(8):1300–1302

    CAS  PubMed  Google Scholar 

  3. Squier CA, Rooney L (1976) The permeability of keratinized and nonkeratinized oral epithelium to lanthanum in vivo. J Ultrastruct Res 54(2):286–295

    CAS  PubMed  Google Scholar 

  4. Squier CA, Cox P, Wertz PW (1991) Lipid content and water permeability of skin and oral mucosa. J Invest Dermatol 96(1):123–126

    CAS  PubMed  Google Scholar 

  5. Squier CA, Hall BK (1985) The permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier. J Invest Dermatol 84(3):176–179

    CAS  PubMed  Google Scholar 

  6. Brandtzaeg P, Tolo K (1977) Mucosal penetrability enhanced by serum-derived antibodies. Nature 266(5599):262–263

    CAS  PubMed  Google Scholar 

  7. Alfano MC, Drummond JF, Miller SA (1975) Localization of rate-limiting barrier to penetration of endotoxin through nonkeratinized oral mucosa in vitro. J Dent Res 54(6):1143–1148

    CAS  PubMed  Google Scholar 

  8. Alfano MC, Chasens AI, Masi CW (1977) Autoradiographic study of the penetration of radiolabelled dextrans and inulin through non-keratinized oral mucosa in vitro. J Periodontal Res 12(5):368–377

    CAS  PubMed  Google Scholar 

  9. Tolo K (1974) Penetration of human albumin through the oral mucosa of guinea-pigs immunized to this protein. Arch Oral Biol 19(3):259–263

    CAS  PubMed  Google Scholar 

  10. Jonckheere N, Skrypek N, Frenois F, Van SeuningenI (2013) Membrane-bound mucin modular domains: from structure to function. Biochimie 95(6):1077–1086

    CAS  PubMed  Google Scholar 

  11. Shirazi T, Longman RJ, Corfield AP, Probert CSJ (2000) Mucins and inflammatory bowel disease. Postgrad Med J 76(898):473–478

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Harris D, Robinson JR (1992) Drug delivery via the mucous membranes of the oral cavity. J Pharm Sci 81(1):1–10

    CAS  PubMed  Google Scholar 

  13. de Almeida Pdel V, Gregio AM, Machado MA, de Lima AA, Azevedo LR(2008) Saliva composition and functions: a comprehensive review. J Contemp Dent Pract 9(3):72–80

    Google Scholar 

  14. Yamahara H, Lee VHL (1993) Drug metabolism in the oral cavity. Adv Drug Deliv Rev 12(1–2):25–39

    CAS  Google Scholar 

  15. Aungst BJ, Rogers NJ, Shefter E (1988) Comparison of nasal, rectal, buccal, sublingual and intramuscular insulin efficacy and the effects of a bile salt absorption promoter. J Pharm ExpTher 244(1):23–27

    CAS  Google Scholar 

  16. Walker GF, Langoth N, Bernkop-Schnurch A(2002) Peptidase activity on the surface of the porcine buccal mucosa. Int J Pharm 233(1–2):141–147

    CAS  PubMed  Google Scholar 

  17. Squier CA (1991) The permeability of oral mucosa. Crit Rev Oral Biol Med 2(1):13–32

    CAS  PubMed  Google Scholar 

  18. Beckett AH, Triggs EJ (1967) Buccal absorption of basic drugs and its application as an in vivo model of passive drug transfer through lipid membranes. J Pharm Pharmacol 19(Suppl):31S–41S

    PubMed  Google Scholar 

  19. Bergman S, Kane D, Siegel IA, Ciancio S (1969) In vitro and in situ transfer of local anaesthetics across the oral mucosa. Arch Oral Biol 14(1):35–43

    CAS  PubMed  Google Scholar 

  20. Beckett AH, Boyes RN, Triggs EJ (1968) Kinetics of buccal absorption of amphetamines. J Pharm Pharmacol 20(2):92–97

    CAS  Google Scholar 

  21. Rathbone MJ (1991) Human buccal absorption. II. A comparative study of the buccal absorption of some parahydroxybenzoic acid derivatives using the buccal absorption test and a buccal perfusion cell. Int J Pharm 74(2–3):189–194

    CAS  Google Scholar 

  22. Shojaei AH, Berner B, Xiaoling L (1998) Transbuccal delivery of acyclovir: I. In vitro determination of routes of buccal transport. Pharm Res 15(8):1182–1188

    CAS  PubMed  Google Scholar 

  23. Squier CA, Kremer MJ, Bruskin A, Rose A, Haley JD (1999) Oral mucosal permeability and stability of transforming growth factor beta-3 in vitro. Pharm Res 16(10):1557–1563

    CAS  PubMed  Google Scholar 

  24. Tavakoli-Saberi MR, Audus KL (1989) Physicochemical factors affecting β-adrenergic antagonist permeation across cultured hamster pouch buccal epithelium. Int J Pharm 56(2):135–142

    CAS  Google Scholar 

  25. Manning AS, Evered DF (1976) The absorption of sugars from the human buccal cavity. Clin Sci Mol Med 51(2):127–132

    CAS  PubMed  Google Scholar 

  26. Kurosaki Y, Yano K, Kimura T (1998) Perfusion cells for studying regional variation in oral mucosal permeability in humans. 2. A specialized transport mechanism in D-glucose absorption exists in dorsum of tongue. J Pharm Sci 87(5):613–615

    CAS  PubMed  Google Scholar 

  27. Sadoogh-Abasian F, Evered DF (1979) Absorption of vitamin C from the human buccal cavity. Brit J Nutr 42(1):15–20

    CAS  PubMed  Google Scholar 

  28. Vadgama JV, Evered DF (1992) Absorption of amino acids from the human mouth. Amino Acids 3(3):271–286

    CAS  PubMed  Google Scholar 

  29. Utoguchi N, Watanabe Y, Suzuki T, Maehara J, Matsumoto Y, Matsumoto M (1997) Carrier-mediated transport of monocarboxylic acids in primary cultured epithelial cells from rabbit oral mucosa. Pharm Res 14(3):320–324

    CAS  PubMed  Google Scholar 

  30. Utoguchi N, Magnusson M, Audus KL (1999) Carrier-mediated transport of monocarboxylic acids in BeWo cell monolayers as a model of the human trophoblast. J Pharm Sci 88(12):1288–1292

    CAS  PubMed  Google Scholar 

  31. Evered DF, Sadoogh-Abasian F, Patel PD (1980) Absorption of nicotinic acid and nicotinamide across human buccal mucosa in vivo. Life Sci 27(18):1649–1651

    CAS  PubMed  Google Scholar 

  32. Evered DF, Mallett C (1983) Thiamine absorption across human buccal mucosa in vivo. Life Sci 32(12):1355–1358

    CAS  PubMed  Google Scholar 

  33. Kurosaki Y, Nishimura H, Terao K, Nakayama T, Kimura T (1992) Existence of a specialized absorption mechanism for cefadroxil, an aminocephalosporin antibiotic, in the human oral cavity. Int J Pharm 82(3):165–169

    CAS  Google Scholar 

  34. Brayton JJ, Yang Q, Nakkula RJ, Walters JD (2002) An in vitro model of ciprofloxacin and minocycline transport by oral epithelial cells. J Periodontol 73(11):1267–1272

    PubMed Central  CAS  PubMed  Google Scholar 

  35. McElnay JC, al-Furaih TA, Hughes CM, Scott MG, Elborn JS, Nicholls DP (1995) The effect of pH on the buccal and sublingual absorption of captopril. Eur J Clin Pharm 48(5):373–379

    CAS  Google Scholar 

  36. McElnay JC, Al-Furaih TA, Hughes CM, Scott MG, Elborn JS, Nicholls DP (1998) Buccal absorption of enalapril and lisinopril. Eur J Clin Pharmacol 54(8):609–614

    CAS  PubMed  Google Scholar 

  37. Dearden JC, Tomlinson E (1971) Correction for effect of dilution on diffusion through a membrane. J Pharm Sci 60(8):1278–1279

    CAS  PubMed  Google Scholar 

  38. Schurmann W, Turner P (1978) A membrane model of the human oral mucosa as derived from buccal absorption performance and physicochemical properties of the beta-blocking drugs atenolol and propranolol. J Pharm Pharmacol 30(3):137–147

    CAS  PubMed  Google Scholar 

  39. Tucker IG (1988) A method to study the kinetics of oral mucosal drug absorption from solutions. J Pharm Pharmacol 40(10):679–683

    CAS  PubMed  Google Scholar 

  40. Temple DJ, Schesmer KR (1978) The buccal absorption characteristics of fomocaine. Arch Pharm 311(6):485–491

    CAS  Google Scholar 

  41. Randhawa MA, Turner P (1988) Buccal absorption of drugs: an in vivo measurement of their innate lipophilicity. Int J Clin Pharmacol Res 8(1):1–4

    CAS  PubMed  Google Scholar 

  42. Arbab AG, Turner P(1971) Influence of pH on absorption of thymoxamine through buccal mucosa in man. Br J Pharmacol 43(2):479P–480P

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Schurmann W, Turner P (1977) The buccal absorption of atenolol and propranolol, and their physicochemical characteristics [proceedings]. Br J Clin Pharmacol 4(5):655P–656P

    CAS  PubMed  Google Scholar 

  44. Past T, Tapsonyi Z, Hortobagyi I (1979) Relationship between the dipole moment and rate of absorption of drugs. Acta Med Acad Sci Hung 36(1):137–147

    CAS  PubMed  Google Scholar 

  45. Yamsani VV, Gannu R, Kolli C, Rao ME, Yamsani MR (2007) Development and in vitro evaluation of buccoadhesivecarvedilol tablets. Acta Pharm (Zagreb, Croatia) 57(2):185–197

    CAS  Google Scholar 

  46. Sekhar KC, Naidu KV, Vishnu YV, Gannu R, Kishan V, Rao YM (2008) Transbuccal delivery of chlorpheniramine maleate from mucoadhesive buccal patches. Drug Deliv 15(3):185–191

    CAS  PubMed  Google Scholar 

  47. McElnay JC, Temple DJ (1982) The use of buccal partitioning as a model to examine the effects of aluminium hydroxide gel on the absorption of propranolol. Br J Clin Pharmacol 13(3):399–403

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Beckett AH, Moffat AC (1968) The influence of alkyl substitution in acids on their performance in the buccal absorption test. J Pharm Pharmacol 20(Suppl):239S+

    Google Scholar 

  49. Edwards G, Breckenridge AM, Adjepon-Yamoah KK, Orme ML, Ward SA (1981) The effect of variations in urinary pH on the pharmacokinetics of diethylcarbamazine. Br J Clin Pharmacol 12(6):807–812

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Kates RE (1977) Absorption kinetics of sublingually administered propranolol. J Med 8(6):393–402

    CAS  PubMed  Google Scholar 

  51. Barsuhn CL, Olanoff LS, Gleason DD, Adkins EL, Ho NF (1988) Human buccal absorption of flurbiprofen. Clin Pharmacol Ther 44(2):225–231

    CAS  PubMed  Google Scholar 

  52. Kaaber S (1974) The permeability and barrier functions of the oral mucosa with respect to water and electrolytes. Studies of the transport of water, sodium and potassium through the human mucosal surface in vivo. Acta Odontol Scand Suppl 32(66):3–47

    CAS  PubMed  Google Scholar 

  53. Anders R, Merkle HP, Schurr W, Ziegler R(1983) Buccal absorption of protirelin: an effective way to stimulate thyrotropin and prolactin. J Pharm Sci72(12):1481–1483

    CAS  PubMed  Google Scholar 

  54. Siegel IA, Gordon HP (1985) Surfactant-induced increases of permeability of rat oral mucosa to non-electrolytes in vivo. Arch Oral Biol 30(1):43–47

    CAS  PubMed  Google Scholar 

  55. Garren KW, Repta AJ (1989) Buccal drug absorption. II: in vitro diffusion across the hamster cheek pouch. J Pharm Sci 78(2):160–164

    CAS  PubMed  Google Scholar 

  56. Kurosaki Y, Hisaichi S-i, Nakayama T, Kimura T (1989) Enhancing effect of 1-dodecylazacycloheptan-2-one (Azone) on the absorption of salicylic acid from keratinized oral mucosa and the duration of enhancement in vivo. Int J Pharm 51(1):47–54

    CAS  Google Scholar 

  57. Sveinsson SJ, Mezei M (1992) In vitro oral mucosal absorption of liposomal triamcinolone acetonide. Pharm Res 9(10):1359–1361

    CAS  PubMed  Google Scholar 

  58. Veillard MM, Longer MA, Martens TW, Robinson JR(1987) Preliminary studies of oral mucosal delivery of peptide drugs. J Control Release 6(1):123–131

    CAS  Google Scholar 

  59. Nagai T, Konishi R (1987) Buccal/gingival drug delivery systems. J Control Release 6(1):353–360

    CAS  Google Scholar 

  60. Eggerth RM, Rashidbaigi ZA, Mahjour M, Goodhart FW, Fawzi MB (eds) (1987) Evaluation of hamster cheek pouch as a model for buccal absorption. Proc Int Symp Control Rel Bioact Mater

    Google Scholar 

  61. Tavakoli-Saberi MR, Audus KL (1989) Cultured buccal epithelium: an in vitro model derived from the hamster pouch for studying drug transport and metabolism. Pharm Res 6(2):160–166

    CAS  PubMed  Google Scholar 

  62. Squier CA, Wertz PW (1996) Structure and function of the oral mucosa and implications for drug delivery. In: Rathbone MJ (ed) Oral mucosal drug delivery, vol 74. Marcel Dekker, New York

    Google Scholar 

  63. Dowty ME, Knuth KE, Irons BK, Robinson JR (1992) Transport of thyrotropin releasing hormone in rabbit buccal mucosa in vitro. Pharm Res 9(9):1113–1122

    CAS  PubMed  Google Scholar 

  64. Mehta M, Kemppainen BW, Stafford RG (1991) In vitro penetration of tritium-labelled water (THO) and [3H]PbTx-3 (a red tide toxin) through monkey buccal mucosa and skin. Toxicol Lett 55(2):185–194

    CAS  PubMed  Google Scholar 

  65. Nielsen HM, Rassing MR (1999) TR146 cells grown on filters as a model of human buccal epithelium: III. Permeability enhancement by different pH values, different osmolality values, and bile salts. Int J Pharm 185(2):215–225

    CAS  PubMed  Google Scholar 

  66. Ebert CD, John VA, Beall PT, Rosenzweig KA (1987) Transbuccalabsorption of diclofenacsodium in a dog model. Controlled-release technology.ACS Symposium Series, 348, American Chemical Society, pp 310–321

    Google Scholar 

  67. Wolany GJM, Munzer J, Rummelt A, Merkle HP (eds) (1990) Buccal absorption of sandostatin(octreotide) in conscious beagle dogs. Proc Int Symp Contr Rel Bioact Mat 17: 224–225

    Google Scholar 

  68. Ishida M, Machida Y, Nambu N, Nagai T (1981) New mucosal dosage form of insulin. Chem Pharm Bull 29(3):810–816

    CAS  PubMed  Google Scholar 

  69. Ritschel WA, Ritschel GB, Forusz H, Kraeling M (1989) Buccal absorption of insulin in the dog. Res Commun Chem Pathol Pharmacol 63(1):53–67

    CAS  PubMed  Google Scholar 

  70. Dodds WJ (ed) (1982) The pig model for biomedical research. Fed Proc 41:247–256

    Google Scholar 

  71. Collins P, Lafloon J, Squier CA (1981) Comparative study of porcine oral epithelium. J Dent Res 60:543

    Google Scholar 

  72. Squier CA, Hall BK (1985) In-vitropermeability of porcine oral mucosa after epithelial separation, stripping and hydration. Arch Oral Biol 30(6):485–491

    CAS  PubMed  Google Scholar 

  73. Nielsen HM, Rassing MR (2000) TR146 cells grown on filters as a model of human buccal epithelium: IV. Permeability of water, mannitol, testosterone and β-adrenoceptor antagonists. Comparison to human, monkey and porcine buccal mucosa. Int J Pharm 194(2):155–167

    CAS  PubMed  Google Scholar 

  74. Lesch CA, Squier CA, Cruchley A, Williams DM, Speight P(1989) The permeability of human oral mucosa and skin to water. J Dent Res 68(9):1345–1349

    CAS  PubMed  Google Scholar 

  75. Sattar M, Sayed OM, Lane ME(2014) Oral transmucosal drug delivery—current status and future prospects. Int J Pharm 471(1–2):498–506

    CAS  PubMed  Google Scholar 

  76. Imbert D, Cullander C (1999) Buccal mucosa in vitro experiments. I. Confocal imaging of vital staining and MTT assays for the determination of tissue viability. J Control Release 58(1):39–50

    CAS  PubMed  Google Scholar 

  77. Kulkarni U, Mahalingam R, Pather I, Li X, Jasti B (2010) Porcine buccal mucosa as in vitro model: effect of biological and experimental variables. J Pharm Sci 99(3):1265–1277

    CAS  PubMed  Google Scholar 

  78. Giannola LI, De Caro V, Giandalia G, Siragusa MG, Tripodo C, Florena AM et al (2007) Release of naltrexone on buccal mucosa: permeation studies, histological aspects and matrix system design. Eur J Pharm Biopharm 67(2):425–433

    CAS  PubMed  Google Scholar 

  79. Caon T, Simoes CM (2011) Effect of freezing and type of mucosa on ex vivo drug permeability parameters. AAPS Pharm Sci Tech 12(2):587–592

    CAS  Google Scholar 

  80. Yuan Q, Fu Y, Kao WJ, Janigro D, Yang H (2011) Transbuccaldelivery of CNS therapeutic nanoparticles: synthesis, characterization, and in vitro permeation studies. ACS Chem Neurosci 2(11):676–683

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Cavallari C, Fini A, Ospitali F (2013) Mucoadhesive multiparticulate patch for the intrabuccal controlled delivery of lidocaine. Eur J Pharm Biopharm 83(3):405–414

    CAS  PubMed  Google Scholar 

  82. Le Brun PPH, Fox PLA, de Vries ME, Bodd’e HE (1989) In vitro penetration of some β-adrenoreceptor blocking drugs through porcine buccal mucosa. Int J Pharm 49(2):141–145

    CAS  Google Scholar 

  83. Artusi M, Santi P, Colombo P, Junginger HE (2003) Buccal delivery of thiocolchicoside: in vitro and in vivo permeation studies. Int J Pharm 250(1):203–213

    CAS  PubMed  Google Scholar 

  84. Holm R, Meng-Lund E, Andersen MB, Jespersen ML, Karlsson JJ, Garmer M et al (2013) In vitro, ex vivo and in vivo examination of buccal absorption of metoprolol with varying pH in TR146 cell culture, porcine buccal mucosa and Gottingen minipigs. Eur J Pharm Sci 49(2):117–124

    CAS  PubMed  Google Scholar 

  85. Langoth N, Bernkop-Schnurch A, Kurka P (2005) In vitro evaluation of various buccal permeation enhancing systems for PACAP (pituitary adenylatecyclase-activating polypeptide). Pharm Res 22(12):2045–2050

    CAS  PubMed  Google Scholar 

  86. Challapalli PV, Stinchcomb AL (2002) In vitro experiment optimization for measuring tetrahydrocannabinol skin permeation. Int J Pharm 241(2):329–339

    CAS  PubMed  Google Scholar 

  87. Nicolazzo JA, Reed BL, Finnin BC (2003) The effect of various in vitro conditions on the permeability characteristics of the buccal mucosa. J Pharm Sci 92(12):2399–2410

    CAS  PubMed  Google Scholar 

  88. Shojaei AH (1998) Buccal mucosa as a route for systemic drug delivery: a review. J Pharm pharmaceutical Pharm Sci 1(1):15–30

    CAS  Google Scholar 

  89. Shojaei AH, Zhuo SL, Li X (1998) Transbuccal delivery of acyclovir (II): feasibility, system design, and in vitro permeation studies. J Pharm Pharm Sci 1(2):66–73

    CAS  PubMed  Google Scholar 

  90. Shojaei AH, Khan M, Lim G, Khosravan R (1999) Transbuccal permeation of a nucleoside analog, dideoxycytidine: effects of menthol as a permeation enhancer. Int J Pharm 192(2):139–146

    CAS  PubMed  Google Scholar 

  91. Nafee NA, Ismail FA, Boraie NA, Mortada LM (2004) Mucoadhesive delivery systems. I. Evaluation of mucoadhesive polymers for buccal tablet formulation. Drug Dev Ind Pharm 30(9):985–993

    CAS  PubMed  Google Scholar 

  92. Madsen KD, Sander C, Baldursdottir S, Pedersen AM, Jacobsen J (2013) Development of an ex vivo retention model simulating bioadhesion in the oral cavity using human saliva and physiologically relevant irrigation media. Int J Pharm 448(2):373–381

    CAS  PubMed  Google Scholar 

  93. Woertz C, Preis M, Breitkreutz J, KleinebuddeP(2013) Assessment of test methods evaluating mucoadhesive polymers and dosage forms: an overview. Eur J Pharm Biopharm 85(3Pt B):843–853

    CAS  PubMed  Google Scholar 

  94. Dressman JB, Amidon GL, Reppas C, Shah VP (1998) Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res 15(1):11–22

    CAS  PubMed  Google Scholar 

  95. Nair VD, Kanfer I (2008) Development of dissolution tests for the quality control of complementary/alternate and traditional medicines: application to African potato products. J Pharm Pharm Sci 11(3):35–44

    CAS  PubMed  Google Scholar 

  96. Azarmi S, Roa W, Lobenberg R (2007) Current perspectives in dissolution testing of conventional and novel dosage forms. Int J Pharm 328(1):12–21

    CAS  PubMed  Google Scholar 

  97. Fabregas JL, Garcia N (1995) In vitro studies on buccoadhesive tablet formulations of hydrocortisone hemisuccinate. Drug Dev Ind Pharm 21:1689–1696

    CAS  Google Scholar 

  98. Okamoto H, Taguchi H, Iida K, Danjo K (2001) Development of polymer film dosage forms of lidocaine for buccal administration. I. Penetration rate and release rate. J Control Release 77(3):253–260

    CAS  PubMed  Google Scholar 

  99. Nafee NA, Boraie MA, Ismail FA, Mortada LM (2003) Design and characterization of mucoadhesive buccal patches containing cetylpyridinium chloride. Acta Pharm (Zagreb, Croatia) 53(3):199–212

    CAS  Google Scholar 

  100. Mumtaz AM, Ch’ng H-S (1995) Design of a dissolution apparatus suitable for in situ release study of triamcinolone acetonide from bioadhesive buccal tablets. IntJ Pharm 121(2):129–139

    CAS  Google Scholar 

  101. Frenning G, Ek R, Stromme M (2002) A new method for characterizing the release of drugs from tablets in low liquid surroundings. J Pharm Sci 91(3):776–784

    CAS  PubMed  Google Scholar 

  102. Lestari ML, Nicolazzo JA, Finnin BC (2009) A novel flow through diffusion cell for assessing drug transport across the buccal mucosa in vitro. J Pharm Sci 98(12):4577–4588

    CAS  PubMed  Google Scholar 

  103. Rachid O, Rawas-Qalaji M, Simons FE, Simons KJ (2011) Dissolution testing of sublingual tablets: a novel in vitro method. AAPS Pharm Sci Tech 12(2):544–552

    CAS  Google Scholar 

  104. Watanabe S, Suemaru K, Yamaguchi T, Hidaka N, Sakanaka M, Araki H (2009) Effect of oral mucosal adhesive films containing ginsenoside Rb1 on 5-fluorouracil-induced oral mucositis in hamsters. Eur J Pharmacol 616(1–3):281–286

    CAS  PubMed  Google Scholar 

  105. Ikinci G, Şenel S, Wilson CG, Sumnu M (2004) Development of a buccal bioadhesive nicotine tablet formulation for smoking cessation. Int J Pharm 277(1–2):173–178

    CAS  PubMed  Google Scholar 

  106. Alanazi FK, Abdel Rahman AA, Mahrous GM, Alsarra IA (2007) Formulation and physicochemical characterization of buccoadhesive films containing ketorolac. J Drug Deliv Sci 17:183–92

    CAS  Google Scholar 

  107. Cilurzo F, Minghetti P, Selmin F, Casiraghi A, Montanari L (2003) Polymethacrylate salts as new low-swellablemucoadhesive materials. J Control Release 88(1):43–53

    CAS  PubMed  Google Scholar 

  108. http://www.accessdata.fda.gov/scripts/cder/dissolution/dsp_SearchResults_Dissolutions.cfm?PrintAll=1. Accessed 24 Jul 2014

  109. Smart JD, Kellaway IW, Worthington HE (1984) An in-vitro investigation of mucosa-adhesive materials for use in controlled drug delivery. J Pharm Pharmacol 36(5):295–299

    CAS  PubMed  Google Scholar 

  110. Sudhakar Y, Kuotsu K, Bandyopadhyay AK (2006) Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release 114(1):15–40

    CAS  PubMed  Google Scholar 

  111. Perioli L, Ambrogi V, Angelici F, Ricci M, Giovagnoli S, Capuccella M et al (2004) Development of mucoadhesive patches for buccal administration of ibuprofen. J Control Release 99(1):73–82

    CAS  PubMed  Google Scholar 

  112. Cho MJ, Thompson DP, Cramer CT, Vidmar TJ, Scieszka JF (1989) The Madin Darby canine kidney (MDCK) epithelial cell monolayer as a model cellular transport barrier. Pharm Res 6(1):71–77

    CAS  PubMed  Google Scholar 

  113. Jacobsen J, Pedersen M, Rassing MR (1996) TR146 cells as a model for human buccal epithelium: II. Optimisation and use of a cellular sensitivity MTS/PMS assay. Int J Pharm 141(1–2):217–225

    CAS  Google Scholar 

  114. Jacobsen J, van Deurs B, Pedersen M, Rassing MR (1995) TR146 cells grown on filters as a model for human buccal epithelium: I. Morphology, growth, barrier properties, and permeability. Int J Pharm 125(2):165–184

    CAS  Google Scholar 

  115. Jacobsen J, Nielsen EB, Brøndum-NielsenK, Christensen ME, Olin H-BD, Tommerup N et al (1999) Filter-grown TR146 cells as an in vitro model of human buccal epithelial permeability. Eur JOral Sci 107(2):138–146

    CAS  Google Scholar 

  116. Rupniak HT, Rowlatt C, Lane EB, Steele JG, Trejdosiewicz LK, Laskiewicz B et al (1985) Characteristics of four new human cell lines derived from squamous cell carcinomas of the head and neck. J Natl Cancer Inst75(4):621–635

    CAS  PubMed  Google Scholar 

  117. Nielsen HM, Rassing MR (2002) Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro: effect of pH and concentration. Eur J Pharm Sci 16(3):151–157

    CAS  PubMed  Google Scholar 

  118. Nielsen HM, Verhoef JC, Ponec M, Rassing MR (1999) TR146 cells grown on filters as a model of human buccal epithelium: permeability of fluorescein isothiocyanate-labelleddextrans in the presence of sodium glycocholate. J Control Release 60(2–3):223–233

    CAS  PubMed  Google Scholar 

  119. Selvaratnam L, Cruchley AT, Navsaria H, Wertz PW, Hagi-Pavli EP, Leigh IM et al (2001) Permeability barrier properties of oral keratinocyte cultures: a model of intact human oral mucosa. Oral Dis 7(4):252–258

    CAS  PubMed  Google Scholar 

  120. Walle T, Walle UK, Sedmera D, Klausner M (2006) Benzo[A]pyrene-induced oral carcinogenesis and chemoprevention: studies in bioengineered human tissue. Drug Metab Dispos 34(3):346–350

    CAS  PubMed  Google Scholar 

  121. Rao S, Song Y, Peddie F, Evans AM (2011) Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs. Int J Nanomed 6:1245–1251

    CAS  Google Scholar 

  122. Darwish M, Kirby M, Robertson PJr, Tracewell W, Jiang JG (2006) Pharmacokinetic properties of fentanyl effervescent buccal tablets: a phase I, open-label, crossover study of single-dose 100, 200, 400, and 800 microg in healthy adult volunteers. ClinTher 28(5):707–714

    CAS  Google Scholar 

  123. Portenoy RK, Messina J, Xie F, Peppin J (2007) Fentanyl buccal tablet (FBT) for relief of breakthrough pain in opioid-treated patients with chronic low back pain: a randomized, placebo-controlled study. Curr Med Res Opin 23(1):223–233

    CAS  PubMed  Google Scholar 

  124. Pongjanyakul T, Suksri H (2009) Alginate-magnesium aluminum silicate films for buccal delivery of nicotine. Colloids and surfaces B. Biointerfaces 74(1):103–113

    CAS  PubMed  Google Scholar 

  125. Lala R, Thorat AA, Gargote CS, Awari NG (2011) Preparation of buccoadhesive polymeric film of ketoprofen and its evaluation. Asian J Pharm Sci 6:267–274

    Google Scholar 

  126. Adhikari SN, Nayak BS, Nayak AK, Mohanty B (2010) Formulation and evaluation of buccal patches for delivery of atenolol. AAPS Pharm Sci Tech 11(3):1038–1044

    CAS  Google Scholar 

  127. Dali MM, Moench PA, Mathias NR, Stetsko PI, Heran CL, Smith RL (2006) A rabbit model for sublingual drug delivery: comparison with human pharmacokinetic studies of propranolol, verapamil and captopril. J Pharm Sci 95(1):37–44

    CAS  PubMed  Google Scholar 

  128. Iga K, Ogawa Y (1997) Sustained-release buccal dosage forms for nitroglycerin and isosorbidedinitrate: increased bioavailability and extended time of absorption when administered to dogs. J Control Release 49(2–3):105–113

    CAS  Google Scholar 

  129. Patel VF, Liu F, Brown MB (2012) Modeling the oral cavity: in vitro and in vivo evaluations of buccal drug delivery systems. J Control Release 161(3):746–756

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the assistance of pharmacy student, Tam Nguyen, who completed an Advanced Pharmacy Practice Experience rotation with Dr. Kolli at California Northstate University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Sekhar Kolli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Kolli, C., Pather, I. (2015). Characterization Methods for Oral Mucosal Drug Delivery. In: Rathbone, M., Senel, S., Pather, I. (eds) Oral Mucosal Drug Delivery and Therapy. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7558-4_6

Download citation

Publish with us

Policies and ethics