Skip to main content

Chemical Methods for Enhancing Oral Mucosal Delivery

  • Chapter
  • First Online:
Oral Mucosal Drug Delivery and Therapy

Abstract

The passage of many drugs through the mucosa of the oral cavity is inherently slow. Therefore, the enhancement of permeation, to an extent that allows the delivery of a suitable dose of the drug, is of interest. One approach to achieve this objective is the use of chemicals that promote delivery of the drug across the mucosa. This chapter reviews the different classes of compounds that may be of utility in this regard. A broad view is taken of the concept of “chemical methods for enhancing delivery.” Thus, chemicals which assist in retaining the dosage form to the mucosa for an extended time, thereby allowing a longer time for drug permeation, are included in this discussion, as are effervescent agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pather SI, Hontz J, Khankari RK, Siebert J (2003) OraVescentTM: a novel technology for the transmucosal delivery of drugs. In: Rathbone M, Hadgraft J, Roberts M (eds) Modified release drug delivery systems. Marcel Dekker, New York, 463–469

    Google Scholar 

  2. Nicolazzo JA, Reed BL, Finnin BC (2005) Buccal penetration enhancers—how do they really work? J Control Release 105:1–15

    Article  CAS  PubMed  Google Scholar 

  3. Şenel S, Hincal AA (2001) Drug permeation enhancement via buccal route: possibilities and limitations. J Control Release 72(1–3):133–144

    PubMed  Google Scholar 

  4. Şenel S, Hoogstraate AJ, Spies F, Verhoef JC, Bos-van Geest A, Junginger HE, Boddé HE (1994) Enhancement of in vitro permeability of porcine buccal mucosa by bile salts: kinetic and histological studies. J Control Release 32 45–56

    Article  Google Scholar 

  5. Hoogstraate AJ, Şenel S, Cullander C, Verhoef J, Junginger HE, Boddé HE (1996) Effects of bile salts on transport rates and routes of FIT-labeled compounds across porcine buccal epithelium in vitro. J Control Release 40:211–221

    Article  CAS  Google Scholar 

  6. Şenel S, Capan Y, Sargon MF (1997) Enhancement of tranbuccal permeation of morphine sulfate by sodium glycodeoxycholate in vitro. J Control Release 45:153–162

    Article  Google Scholar 

  7. Şenel S, Duchêne D, Hincal AA (1998a) In vitro studies on enhancing effect of sodium glycocholate on transbuccal permeation of morphine hydrochloride. J Control Release 51:107–113

    Article  PubMed  Google Scholar 

  8. Şenel S, CapanY, SargonMF (1998b) Histological and bioadhesion studies on buccal bioadhesive tablets containing a penetration enhancer sodium glycocholate. Int J Pharm 170:239–245

    Article  Google Scholar 

  9. Yamamoto A, Hayakawa E, Lee VHL (1990) Insulin and proinsulin proteolysis in mucosal homogenates of the albino rabbit: implications in peptide delivery from nonoral routes. Life Sci 47:2465–2474

    Article  CAS  PubMed  Google Scholar 

  10. Ganem-Quintanar A, Kalia YN, Falson-Rieg F, Buri P (1997) Mechanisms of oral permeation enhancement. Int J Pharm 156:127–142

    Article  CAS  Google Scholar 

  11. Veuillez F, Kalia YN et al (2001) Factors and strategies for improving buccal absorption of peptides. EJPB 51:93–109

    CAS  Google Scholar 

  12. Cooper ER (1983) Increased skin permeability for lipophilic molecules. J Pharm Sci 73:1153–1156

    Article  Google Scholar 

  13. TsutsumiK, ObataY, TakayamaK, LoftssonT, NagaiT (1998) Effect of cod-liver oil extract on the buccal permeation of ergotamine tartrate. Drug Dev Ind Pharm 24:757–762

    Article  CAS  PubMed  Google Scholar 

  14. Lee J, Kellaway IW (2000) Combined effect of oleic acid and polyethylene glycol 200 on buccal permeation of [D-Ala, D-Leu]encephalin from a cubic phase of glyceryl monooleate. Int J Pharm 204:137–144

    Article  CAS  PubMed  Google Scholar 

  15. Manganaro AM, Wertz PW (1996) The effects of permeabilizers on the in vitro penetration of propranolol through porcine buccal epithelium. Mil Med 161:669–672

    CAS  PubMed  Google Scholar 

  16. Knapczyk J (1993) Excipient ability of chitosan for direct tableting. Int J Pharm 89:1–7

    Article  CAS  Google Scholar 

  17. Miyazaki S, Nakayama A, Oda M, Takada M, Attwood D (1995) Drug release from oral mucosal adhesive tablets of chitosan and sodium alginate. Int J Pharm 118:257–263

    Article  CAS  Google Scholar 

  18. Şenel S, Kremer MJ, KaŞ SH, Wertz PW, Hıncal AA, Squier CA (2000) Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials 21:2067–2071

    Article  PubMed  Google Scholar 

  19. Kremer MJ, Şenel S, Kas SH, Wertz PW, Hincal AA, Squier CA (1999) Oral mucosal drug delivery: chitosan as vehicle and permeabilizer. J Dent Res 77:718

    Google Scholar 

  20. Giovino C, Ayensu I, Tetteh J, Boateng JS (2012) Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery. Int J Pharm 428:143–151

    Article  CAS  PubMed  Google Scholar 

  21. Ayensu I, Mitchell JC, Boateng JS (2012a) Development and physico-mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa. ColloidsSur B Biointerfaces 91:258–265

    Article  CAS  Google Scholar 

  22. Ayensua I, Mitchell JC, Boateng JS (2012b) Effect of membrane dialysis on characteristics of lyophilised chitosan wafers for potential buccal delivery of proteins. Int J Biol Macromol 50:905–909

    Article  Google Scholar 

  23. Pongjanyakula T, Khunawattanakula W, Strachanb CJ, Gordon KC, Puttipipatkhachorn S, Rades T (2013) Characterization of chitosan–magnesium aluminum silicate nanocomposite. Int J Biol Macromol 55:24–31

    Article  Google Scholar 

  24. Abruzzo A, Bigucci F, Cerchiara T, Cruciani F, Vitali B, Luppi B (2012) Mucoadhesive chitosan/gelatin films for buccal delivery of propranolol hydrochloride.Carbohydr Polym 87:581–588

    Article  CAS  Google Scholar 

  25. Bernkop-Schnürch A, Dunnhaupt S (2012) Chitosan-based drug delivery systems. Euro J Pharm Biopharm 81:463–469

    Article  Google Scholar 

  26. Rathi AA, Dhamecha DL, Patel KA, Saifee M, Dehghan MHG (2011) Effect of permeation enhancers on permeation kinetics of idebenone through the bovine buccal mucosa. Indian J Pharm Educ Sci 45:370–374

    Google Scholar 

  27. Kurosaki Y, Hisaichi S, Hamada C, Nakayama T, Kimura T (1988) Effects of surfactants on the absorption of salicylic acid from hamster cheek pouch as a model of keratinized oral mucosa. IJP 47:13–19

    CAS  Google Scholar 

  28. Aungst BJ (1994a) Site-dependence and structure-effect relationships for alkylglycosides as transmucosal absorption promoters for insulin. IJP 105:219–225

    CAS  Google Scholar 

  29. Rai V, Tan HS,Michniak-Kohn B (2011) Effect of surfactants and pH on naltrexone (NTX) permeation across buccal mucosa. Int J Pharm 411:92–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Malik N, Duncan R (2000) Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res 17:991–998

    Article  PubMed  Google Scholar 

  31. Wiwattanapatapee R, Carrenó-Gómez B, Malik N, Duncan R (2000) Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res 17:991–998

    Article  CAS  PubMed  Google Scholar 

  32. Yuan Q, Fu Y, Weiyuan JK, Janigro D, Yang H (2011) Transbuccal delivery of CNS therapeutic nanoparticles: synthesis, characterization, and in vitro permeation studies. ACS Chem Neurosci 2:676–683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Modi P (2002) Pharmaceutical compositions for buccal and pulmonary administration comprising an alkali metal alkyl sulfate and at least three micelle-forming compounds. United States Patent 6,451,286

    Google Scholar 

  34. Modi P (2006) Methods of administering and enhancing absorption of pharmaceutical agents. United States Patent 7,087,215

    Google Scholar 

  35. Modi P (2010) Method for administering insulin to the buccal region. United States Patent 7,687,453

    Google Scholar 

  36. Beckett AH, Triggs EJ (1967) Buccal absorption of basic drugs and its application as an in vivo model of passive drug transfer through lipid membranes. J Pharm Pharmacol 19(Suppl):31S–41S

    PubMed  Google Scholar 

  37. Beckett AH, Boyes RN, Triggs EJ (1968) Kinetics of buccal absorption of amphetamines. J Pharm Pharmacol 20:92–97

    Article  CAS  Google Scholar 

  38. Eichman JD, Robinson JR (1998) Mechanistic studies on effervescent-induced permeability enhancement. Pharm Res 15:925–930

    Article  CAS  PubMed  Google Scholar 

  39. Pather I, Siebert JM, Hontz J, Khankari R, Kumbale R, Gupte S (2001) Enhanced buccal delivery of fentanyl using the oravescent drug delivery system. Drug Deliv Technol 1:1–4

    Google Scholar 

  40. Singh N, Pather SI (2012) Methods of treating middle-of-the-night insomnia. U. S. Patent 8,242,131

    Google Scholar 

  41. Vermeeren A, Leufkens TRM, van Leeuwen C, van Oers A, Vuurman E, Singh NN, Steinberg F, Rico S, Laska E, Roth T (2011) Effect of middle-of-the-night doses of zolpidem sublingual tablet 3.5 mg on next-morning driving performance. Sleep Med 12(Suppl. 1):S7

    Google Scholar 

  42. FDA news release (2013) http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm334798.htm.

  43. Wang Y, Zuo Z, Moses SS, Chow MS (2009) HO-1-u-1 model for screening sublingual drug delivery—influence of pH, osmolarity and permeation enhancer. Int J Pharm 370:8–74

    Article  Google Scholar 

  44. Wang Y, Zuo Z, Chen X, Tomlinson B, Chow MSS (2010) Improving sublingual delivery of weak base compounds using pHmax concept: application to propranolol. EJPS 39:272–278

    CAS  Google Scholar 

  45. Alur HH, Pather SI, Mitra AK, Johnston TP (1999a) Evaluation of the gum from hakea gibbosa as a sustained-release and mucoadhesive component in buccal tablets. Pharm Dev Technol 4:347–358

    Article  CAS  PubMed  Google Scholar 

  46. Alur HH, Beal JD, Pather SI, Mitra AK, Johnston TP (1999b) Evaluation of a novel, natural oligosaccharide gum as a sustained-release and mucoadhesive component of calcitonin buccal tablets. J Pharm Sci 88:1313–1319

    Article  CAS  PubMed  Google Scholar 

  47. Alur HH, Pather SI et al (1999c) Transmucosal sustained-delivery of chlorpheniramine maleate in rabbits using a novel, natural mucoadhesive gum as an excipient in buccal tablets. Int J Pharm 88:1–10

    Article  Google Scholar 

  48. Shaikh R, Singh TRR, Garland MJ, Woolfson AD, Donnelly RF (2011) J Pharm Bioallied Sci 3:89–100. doi:10.4103/0975-7406.76478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sudhakar Y, Kuotsu K, Bandyopadhyay AK (2006) Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release 114:15–40

    Article  CAS  PubMed  Google Scholar 

  50. Sander C, Madsen KD, Hyrup B, Nielsen HM, Rantanen J, Jacobsen J (2013) Characterization of spray dried bioadhesive metformin microparticles for oromucosal administration. EJPB. doi:http://dx.doi.org/10.1016/j.ejpb.2013.05.017. Accessed 14 June 2014

  51. Aungst BJ (1994b) Permeability and metabolism as barriers to transmucosal delivery of peptides and proteins. In: Hsieh DS (ed) Drug permeation enhancement. Marcel Dekker, New York, 323–343

    Google Scholar 

  52. Hao J, Heng PSW (2003) Buccal delivery systems. Drug Dev Ind Pharm 29:821–832

    Article  CAS  PubMed  Google Scholar 

  53. Lee VHL (1988) Enzymatic barriers to peptide and protein absorption. Crit Rev Ther Drug Carrier Syst 5:69–97

    CAS  PubMed  Google Scholar 

  54. Lee VHL (1989) Peptidase activities in absorptive mucosae.BiochemSoc Trans 17:937–940

    CAS  Google Scholar 

  55. Alur HH, Johnson TP, Mitra AK (2001) Peptides and proteins: buccal absorption. In:Swarbrick J, Boylan JC (ed) Encycl Pharm Technol 20(Suppl. 3):193–218

    Google Scholar 

  56. Aungst BJ, Rogers NJ (1988) Dependence of absorption-promoting actions of laureth-9, salicylate, Na2EDTA, and aprotinin on rectal, nasal, and buccal insulin delivery. Pharm Res 5:305–308

    Article  CAS  PubMed  Google Scholar 

  57. Walker GF, Langoth N, Bernkop-Schnürch A (2002) Peptidase activity on the surface of the porcine buccal mucosa. Int J Pharm 233:141–147

    Article  CAS  PubMed  Google Scholar 

  58. Dowty ME, Knuth KE, Irons BK, Robinson JR (1992) Transport of thyrotropin releasing hormone in rabbit buccal mucosa in vitro. Pharm Res 9:1113–1122

    Article  CAS  PubMed  Google Scholar 

  59. Johnston TP, Rahman A, Alur H, Shah D, Mitra AK (1998) Permeation of unfolded basic fibroblast growth factor (bFGF) across rabbit buccal mucosa-does unfolding of bFGF enhance transport. Pharm Res 15:246–253

    Article  CAS  PubMed  Google Scholar 

  60. Bernkop-Schnürch A, Paikl C, Valenta C (1997) Novel bioadhesive chitosan-EDTA conjugate protects leucine enkephalin from degradation by aminopeptidase. Pharm Res 14(7):917–922

    Article  PubMed  Google Scholar 

  61. Langoth N, Kahlbacher H, Schoffmann G, Schmerold I, Schuh M, Franz S, Kurka P, Bernkop-Schnürch A (2006) Thiolated chitosans: design and in vivo evaluation of a mucoadhesive buccal peptide drug delivery system. Pharm Res 23:573–579

    Article  CAS  PubMed  Google Scholar 

  62. Bernkop-Schnürch A, Krauland AH, Leitner VM, Palmberger T (2004) Thiomers: potential excipients for non-invasive peptide delivery systems. Eur J Pharm Biopharm 58:253–263

    Google Scholar 

  63. Eagles PFK (1992) Structures of complex plant polysaccharides. Exudates from Hakea sericea and Kakea gibbosa. Ph. D. thesis, Department of Chemistry, University of Capetown, South Africa

    Google Scholar 

  64. Lee VHL, Yamamoto A (1990) Penetration and enzymatic barriers to peptide and protein absorption. Adv Drug Del Rev 4:171–207

    Article  CAS  Google Scholar 

  65. Darwish M, Xie F (2012) Pharmacokinetics of fentanyl buccal tablet: a pooled analysis and review. Pain Pract 12:307–314. doi:10.1111/j.1533-2500.2011.00491.x

    Article  PubMed  Google Scholar 

  66. Palermo A, Napoli N, Manfrini S, Lauria A, Stollo R, Pozzilli P (2011) Buccal spray insulin in subjects with impaired glucose tolerance: the prevoral study. Diabetes Obes Metab 13:42–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the assistance of pharmacy student, Grant Ayvazyan, who completed an Advanced Pharmacy Practice Experience rotation with Dr. Pather.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indiran Pather .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Pather, I., Kolli, C. (2015). Chemical Methods for Enhancing Oral Mucosal Delivery. In: Rathbone, M., Senel, S., Pather, I. (eds) Oral Mucosal Drug Delivery and Therapy. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7558-4_3

Download citation

Publish with us

Policies and ethics