Skip to main content

Neuroendocrine Abnormalities in Female Athletes

  • Chapter
  • First Online:
The Female Athlete Triad

Abstract

This chapter will review hormonal changes noted acutely and chronically with exercise, specifically focusing on abnormalities noted in female athletes with menstrual dysfunction and/or energy deficiency. Where information regarding amenorrheic (presumably energy deficient) athletes is lacking, hormonal patterns in women with anorexia nervosa have been included. The last two decades have shed much light on the intricate relationships between exercise, nutrition, appetite regulation, stress, and the reproductive system. In athletes with functional hypothalamic amenorrhea (FHA), a combination of nutritional deficits, stress, and hormonal aberrations lead to a disruption of gonadotropin-releasing hormone (GnRH) pulsatility, subsequently causing menstrual irregularity or amenorrhea. Particularly, low fat mass and alterations in hormones such as ghrelin, leptin, peptide YY, and cortisol have been associated with altered luteinizing hormone (LH) levels and LH pulsatile patterns. Importantly, one of the most severe consequences of FHA is poor bone health. In fact, many hormonal alterations that contribute to FHA also have deleterious effects on bone. This chapter will discuss relationships among the various hormonal changes in FHA and bone metabolism. Thus, it will describe some of the known and suspected mechanisms leading to the Female Athlete Triad (Triad), and will discuss the current data on hormonal interventions thus far attempted to treat Triad.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nattiv A, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    PubMed  Google Scholar 

  2. Scheid JL, et al. Elevated PYY is associated with energy deficiency and indices of subclinical disordered eating in exercising women with hypothalamic amenorrhea. Appetite. 2009;52(1):184–92.

    PubMed  CAS  Google Scholar 

  3. Doyle-Lucas AF, Akers JD, Davy BM. Energetic efficiency, menstrual irregularity, and bone mineral density in elite professional female ballet dancers. J Dance Med Sci. 2010;14(4):146–54.

    PubMed  Google Scholar 

  4. Gordon CM. Clinical practice. Functional hypothalamic amenorrhea. N Engl J Med. 2010;363(4):365–71.

    PubMed  CAS  Google Scholar 

  5. Hagmar M, et al. Hyperandrogenism may explain reproductive dysfunction in olympic athletes. Med Sci Sports Exerc. 2009;41(6):1241–8.

    PubMed  Google Scholar 

  6. Clarke IJ. Control of GnRH secretion. J Reprod Fertil Suppl. 1987;34:1–8.

    PubMed  CAS  Google Scholar 

  7. Perkins RB, Hall JE, Martin KA. Neuroendocrine abnormalities in hypothalamic amenorrhea: spectrum, stability, and response to neurotransmitter modulation. J Clin Endocrinol Metab. 1999;84(6):1905–11.

    PubMed  CAS  Google Scholar 

  8. Fuqua JS, Rogol AD. Neuroendocrine alterations in the exercising human: implications for energy homeostasis. Metabolism. 2013;62(7):911–21.

    PubMed  CAS  Google Scholar 

  9. Ackerman KE, et al. Higher ghrelin and lower leptin secretion are associated with lower LH secretion in young amenorrheic athletes compared with eumenorrheic athletes and controls. Am J Physiol Endocrinol Metab. 2012;302(7):E800–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol (1985). 1998;84(1):37–46.

    CAS  Google Scholar 

  11. De Souza MJ, et al. High frequency of luteal phase deficiency and an ovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal–follicular transition. J Clin Endocrinol Metab. 1998;83(12):4220–32.

    PubMed  Google Scholar 

  12. Jonard S, et al. The ovarian markers of the FSH insufficiency in functional hypothalamic amenorrhoea. Hum Reprod. 2005;20(1):101–7.

    PubMed  CAS  Google Scholar 

  13. Gilsanz V, et al. Age at onset of puberty predicts bone mass in young adulthood. J Pediatr. 2011;158(1):100–5. 105 e1-2.

    PubMed  Google Scholar 

  14. Gruodyte R, et al. The relationships among bone health, insulin-like growth factor-1 and sex hormones in adolescent female athletes. J Bone Miner Metab. 2010;28(3):306–13.

    PubMed  CAS  Google Scholar 

  15. Drinkwater BL, et al. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med. 1984;311(5):277–81.

    PubMed  CAS  Google Scholar 

  16. Laughlin GA, Dominguez CE, Yen SS. Nutritional and endocrine-metabolic aberrations in women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab. 1998;83(1):25–32.

    PubMed  CAS  Google Scholar 

  17. De Souza MJ, et al. High prevalence of subtle and severe menstrual disturbances in exercising women: confirmation using daily hormone measures. Hum Reprod. 2010;25(2):491–503.

    PubMed  Google Scholar 

  18. Ducher G, et al. Obstacles in the optimization of bone health outcomes in the female athlete triad. Sports Med. 2011;41(7):587–607.

    PubMed  Google Scholar 

  19. Misra M, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res. 2011;26(10):2430–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Weissberger AJ, Ho KK, Lazarus L. Contrasting effects of oral and transdermal routes of estrogen replacement therapy on 24-hour growth hormone (GH) secretion, insulin-like growth factor I, and GH-binding protein in postmenopausal women. J Clin Endocrinol Metab. 1991;72(2):374–81.

    PubMed  CAS  Google Scholar 

  21. Enea C, et al. Circulating androgens in women: exercise-induced changes. Sports Med. 2011;41(1):1–15.

    PubMed  Google Scholar 

  22. Loucks AB, et al. Alterations in the hypothalamic–pituitary–ovarian and the hypothalamic–pituitary–adrenal axes in athletic women. J Clin Endocrinol Metab. 1989;68(2):402–11.

    PubMed  CAS  Google Scholar 

  23. De Souza MJ. Menstrual disturbances in athletes: a focus on luteal phase defects. Med Sci Sports Exerc. 2003;35(9):1553–63.

    PubMed  Google Scholar 

  24. Miller KK, et al. Androgens in women with anorexia nervosa and normal-weight women with hypothalamic amenorrhea. J Clin Endocrinol Metab. 2007;92(4):1334–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Lawson EA, et al. Hormone predictors of abnormal bone microarchitecture in women with anorexia nervosa. Bone. 2010;46(2):458–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Ackerman KE, et al. Estradiol levels predict bone mineral density in male collegiate athletes: a pilot study. Clin Endocrinol (Oxf). 2012;76(3):339–45.

    CAS  Google Scholar 

  27. Webb SJ, et al. The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev. 2006;38(1–2):89–116.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Ostrowska Z, et al. Dehydroepiandrosterone sulfate, osteoprotegerin and its soluble ligand sRANKL and bone metabolism in girls with anorexia nervosa. Postepy Hig Med Dosw (Online). 2012;66:655–62.

    Google Scholar 

  29. Monteleone P, et al. Plasma levels of neuroactive steroids are increased in untreated women with anorexia nervosa or bulimia nervosa. Psychosom Med. 2001;63(1):62–8.

    PubMed  CAS  Google Scholar 

  30. Stein D, et al. Circulatory neurosteroid levels in underweight female adolescent anorexia nervosa inpatients and following weight restoration. Eur Neuropsychopharmacol. 2005;15(6):647–53.

    PubMed  CAS  Google Scholar 

  31. Oskis A, et al. Diurnal patterns of salivary cortisol and DHEA in adolescent anorexia nervosa. Stress. 2012;15(6):601–7.

    PubMed  CAS  Google Scholar 

  32. Gordon CM, et al. Effects of oral dehydroepiandrosterone on bone density in young women with anorexia nervosa: a randomized trial. J Clin Endocrinol Metab. 2002;87(11):4935–41.

    PubMed  CAS  Google Scholar 

  33. DiVasta AD, et al. Does hormone replacement normalize bone geometry in adolescents with anorexia nervosa? J Bone Miner Res. 2014;29(1):151–7.

    PubMed  CAS  Google Scholar 

  34. De Palo EF, et al. Correlations of growth hormone (GH) and insulin-like growth factor I (IGF-I): effects of exercise and abuse by athletes. Clin Chim Acta. 2001;305(1–2):1–17.

    PubMed  Google Scholar 

  35. Eliakim A, et al. Physical fitness, endurance training, and the growth hormone-insulin-like growth factor I system in adolescent females. J Clin Endocrinol Metab. 1996;81(11):3986–92.

    PubMed  CAS  Google Scholar 

  36. Wideman L, et al. Growth hormone release during acute and chronic aerobic and resistance exercise: recent findings. Sports Med. 2002;32(15):987–1004.

    PubMed  Google Scholar 

  37. Fazeli PK, Klibanski A. Determinants of GH resistance in malnutrition. J Endocrinol. 2014;220(3):R57–65.

    PubMed  CAS  Google Scholar 

  38. Misra M, Klibanski A. The neuroendocrine basis of anorexia nervosa and its impact on bone metabolism. Neuroendocrinology. 2011;93(2):65–73.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Misra M, et al. Alterations in growth hormone secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J Clin Endocrinol Metab. 2003;88(12):5615–23.

    PubMed  CAS  Google Scholar 

  40. Laughlin GA, Yen SS. Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab. 1996;81(12):4301–9.

    PubMed  CAS  Google Scholar 

  41. Waters DL, et al. Increased pulsatility, process irregularity, and nocturnal trough concentrations of growth hormone in amenorrheic compared to eumenorrheic athletes. J Clin Endocrinol Metab. 2001;86(3):1013–9.

    PubMed  CAS  Google Scholar 

  42. Dhanwal DK. Thyroid disorders and bone mineral metabolism. Indian J Endocrinol Metab. 2011;15 Suppl 2:S107–12.

    PubMed  PubMed Central  Google Scholar 

  43. Harvey CB, et al. Molecular mechanisms of thyroid hormone effects on bone growth and function. Mol Genet Metab. 2002;75(1):17–30.

    PubMed  CAS  Google Scholar 

  44. Loucks AB, et al. Hypothalamic–pituitary–thyroidal function in eumenorrheic and amenorrheic athletes. J Clin Endocrinol Metab. 1992;75(2):514–8.

    PubMed  CAS  Google Scholar 

  45. Loucks AB, Callister R. Induction and prevention of low-T3 syndrome in exercising women. Am J Physiol. 1993;264(5 Pt 2):R924–30.

    PubMed  CAS  Google Scholar 

  46. Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Physiol. 1994;266(3 Pt 2):R817–23.

    PubMed  CAS  Google Scholar 

  47. Lawson EA, Klibanski A. Endocrine abnormalities in anorexia nervosa. Nat Clin Pract Endocrinol Metab. 2008;4(7):407–14.

    PubMed  Google Scholar 

  48. Harber VJ, Petersen SR, Chilibeck PD. Thyroid hormone concentrations and muscle metabolism in amenorrheic and eumenorrheic athletes. Can J Appl Physiol. 1998;23(3):293–306.

    PubMed  CAS  Google Scholar 

  49. Ferrari P. Cortisol and the renal handling of electrolytes: role in glucocorticoid-induced hypertension and bone disease. Best Pract Res Clin Endocrinol Metab. 2003;17(4):575–89.

    PubMed  CAS  Google Scholar 

  50. Inder WJ, Wittert GA. Exercise and the hypothalamic–pituitary–adrenal axis. In: Kraemer WJ, Rogol AD, editors. The endocrine system in sports and exercise. Malden, MA: Blackwell; 2005.

    Google Scholar 

  51. Tabata I, et al. Effect of low blood glucose on plasma CRF, ACTH, and cortisol during prolonged physical exercise. J Appl Physiol (1985). 1991;71(5):1807–12.

    CAS  Google Scholar 

  52. Kanaley JA, et al. Cortisol levels during prolonged exercise: the influence of menstrual phase and menstrual status. Int J Sports Med. 1992;13(4):332–6.

    PubMed  CAS  Google Scholar 

  53. De Souza MJ, et al. Adrenal activation and the prolactin response to exercise in eumenorrheic and amenorrheic runners. J Appl Physiol. 1991;70(6):2378–87.

    PubMed  Google Scholar 

  54. Misra M, et al. Alterations in cortisol secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J Clin Endocrinol Metab. 2004;89(10):4972–80.

    PubMed  CAS  Google Scholar 

  55. Ackerman KE, et al. Cortisol secretory parameters in young exercisers in relation to LH secretion and bone parameters. Clin Endocrinol (Oxf). 2013;78(1):114–9.

    CAS  Google Scholar 

  56. Thrailkill KM, et al. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab. 2005;289(5):E735–45.

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Ho RC, Alcazar O, Goodyear LJ. Exercise regulation of insulin action in skeletal muscle. In: Kraemer WJ, Rogol AD, editors. The endocrine system in sports and exercise. Oxford, UK: Blackwell; 2005. p. 388–407.

    Google Scholar 

  58. De Souza MJ, et al. Luteal phase deficiency in recreational runners: evidence for a hypometabolic state. J Clin Endocrinol Metab. 2003;88(1):337–46.

    PubMed  Google Scholar 

  59. Corr M, et al. Circulating leptin concentrations do not distinguish menstrual status in exercising women. Hum Reprod. 2011;26(3):685–94.

    PubMed  CAS  Google Scholar 

  60. Mantzoros CS, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab. 2011;301(4):E567–84.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Weimann E, et al. Hypoleptinemia in female and male elite gymnasts. Eur J Clin Invest. 1999;29(10):853–60.

    PubMed  CAS  Google Scholar 

  62. Zietz B, et al. Nutritional composition in different training stages in young female athletes (swimming) and association with leptin, IGF-1 and estradiol. Exp Clin Endocrinol Diabetes. 2009;117(6):283–8.

    PubMed  CAS  Google Scholar 

  63. Simsch C, et al. Training intensity influences leptin and thyroid hormones in highly trained rowers. Int J Sports Med. 2002;23(6):422–7.

    PubMed  CAS  Google Scholar 

  64. Jurimae J, et al. Peripheral signals of energy homeostasis as possible markers of training stress in athletes: a review. Metabolism. 2011;60(3):335–50.

    PubMed  Google Scholar 

  65. Desgorces FD, et al. Leptin response to acute prolonged exercise after training in rowers. Eur J Appl Physiol. 2004;91(5–6):677–81.

    PubMed  CAS  Google Scholar 

  66. Bouassida A, et al. Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br J Sports Med. 2010;44(9):620–30.

    PubMed  CAS  Google Scholar 

  67. De Souza MJ, et al. Fasting ghrelin levels in physically active women: relationship with menstrual disturbances and metabolic hormones. J Clin Endocrinol Metab. 2004;89(7):3536–42.

    PubMed  Google Scholar 

  68. Hilton LK, Loucks AB. Low energy availability, not exercise stress, suppresses the diurnal rhythm of leptin in healthy young women. Am J Physiol Endocrinol Metab. 2000;278(1):E43–9.

    PubMed  CAS  Google Scholar 

  69. Hamrick MW, Ferrari SL. Leptin and the sympathetic connection of fat to bone. Osteoporos Int. 2008;19(7):905–12.

    PubMed  CAS  Google Scholar 

  70. Dalamaga M, et al. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 2013;18(1):29–42.

    PubMed  CAS  Google Scholar 

  71. Welt CK, et al. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med. 2004;351(10):987–97.

    PubMed  CAS  Google Scholar 

  72. Sienkiewicz E, et al. Long-term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypoleptinemic women. Metabolism. 2011;60(9):1211–21.

    PubMed  CAS  Google Scholar 

  73. Erdmann J, et al. Postprandial response of plasma ghrelin levels to various test meals in relation to food intake, plasma insulin, and glucose. J Clin Endocrinol Metab. 2004;89(6):3048–54.

    PubMed  CAS  Google Scholar 

  74. Gnanapavan S, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab. 2002;87(6):2988.

    PubMed  CAS  Google Scholar 

  75. Leidy HJ, et al. Circulating ghrelin is sensitive to changes in body weight during a diet and exercise program in normal-weight young women. J Clin Endocrinol Metab. 2004;89(6):2659–64.

    PubMed  CAS  Google Scholar 

  76. Tschop M, et al. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–9.

    PubMed  CAS  Google Scholar 

  77. Tolle V, et al. Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women. J Clin Endocrinol Metab. 2003;88(1):109–16.

    PubMed  CAS  Google Scholar 

  78. Otto B, et al. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol. 2001;145(5):669–73.

    PubMed  CAS  Google Scholar 

  79. Cummings DE, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–30.

    PubMed  Google Scholar 

  80. De Souza MJ, et al. Severity of energy-related menstrual disturbances increases in proportion to indices of energy conservation in exercising women. Fertil Steril. 2007;88(4):971–5.

    PubMed  Google Scholar 

  81. Myerson M, et al. Resting metabolic rate and energy balance in amenorrheic and eumenorrheic runners. Med Sci Sports Exerc. 1991;23(1):15–22.

    PubMed  CAS  Google Scholar 

  82. Christo K, et al. Acylated ghrelin and leptin in adolescent athletes with amenorrhea, eumenorrheic athletes and controls: a cross-sectional study. Clin Endocrinol (Oxf). 2008;69(4):628–33.

    CAS  Google Scholar 

  83. Messini CI, et al. Inhibitory effect of submaximal doses of ghrelin on gonadotropin secretion in women. Horm Metab Res. 2014;46(1):36–40.

    PubMed  CAS  Google Scholar 

  84. Fernandez-Fernandez R, et al. Effects of ghrelin upon gonadotropin-releasing hormone and gonadotropin secretion in adult female rats: in vivo and in vitro studies. Neuroendocrinology. 2005;82(5–6):245–55.

    PubMed  CAS  Google Scholar 

  85. Chan JL, et al. Peptide YY levels are decreased by fasting and elevated following caloric intake but are not regulated by leptin. Diabetologia. 2006;49(1):169–73.

    PubMed  CAS  Google Scholar 

  86. Batterham RL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418(6898):650–4.

    PubMed  CAS  Google Scholar 

  87. Scheid JL, De Souza MJ. Menstrual irregularities and energy deficiency in physically active women: the role of ghrelin, PYY and adipocytokines. Med Sport Sci. 2010;55:82–102.

    PubMed  CAS  Google Scholar 

  88. Utz AL, et al. Peptide YY (PYY) levels and bone mineral density (BMD) in women with anorexia nervosa. Bone. 2008;43(1):135–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Russell M, et al. Peptide YY in adolescent athletes with amenorrhea, eumenorrheic athletes and non-athletic controls. Bone. 2009;45(1):104–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Keene AC, et al. Forebrain sites of NPY action on estrous behavior in Syrian hamsters. Physiol Behav. 2003;78(4–5):711–6.

    PubMed  CAS  Google Scholar 

  91. Fernandez-Fernandez R, et al. Effects of polypeptide YY(3-36) upon luteinizing hormone-releasing hormone and gonadotropin secretion in prepubertal rats: in vivo and in vitro studies. Endocrinology. 2005;146(3):1403–10.

    PubMed  CAS  Google Scholar 

  92. Coiro V, et al. Effects of ghrelin on circulating neuropeptide Y levels in humans. Neuro Endocrinol Lett. 2006;27(6):755–7.

    PubMed  CAS  Google Scholar 

  93. Meczekalski B, et al. Functional hypothalamic amenorrhea: current view on neuroendocrine aberrations. Gynecol Endocrinol. 2008;24(1):4–11.

    PubMed  CAS  Google Scholar 

  94. Kalra SP, Crowley WR. Neuropeptide Y: a novel neuroendocrine peptide in the control of pituitary hormone secretion, and its relation to luteinizing hormone. Front Neuroendocrinol. 1992;13(1):1–46.

    PubMed  CAS  Google Scholar 

  95. Ahima RS. Body fat, leptin, and hypothalamic amenorrhea. N Engl J Med. 2004;351(10):959–62.

    PubMed  CAS  Google Scholar 

  96. Meczekalski B, et al. Clinical evaluation of patients with weight loss-related amenorrhea: neuropeptide Y and luteinizing hormone pulsatility. Gynecol Endocrinol. 2006;22(5):239–43.

    PubMed  Google Scholar 

  97. Coiro V, et al. Different plasma neuropeptide Y concentrations in women athletes with and without menstrual cyclicity. Fertil Steril. 2006;85(3):767–9.

    PubMed  CAS  Google Scholar 

  98. Abbasi F, et al. Discrimination between obesity and insulin resistance in the relationship with adiponectin. Diabetes. 2004;53(3):585–90.

    PubMed  CAS  Google Scholar 

  99. Bou Khalil R, El Hachem C. Adiponectin in eating disorders. Eat Weight Disord. 2014;19(1):3–10.

    Google Scholar 

  100. Perrini S, et al. Fat depot-related differences in gene expression, adiponectin secretion, and insulin action and signalling in human adipocytes differentiated in vitro from precursor stromal cells. Diabetologia. 2008;51(1):155–64.

    PubMed  CAS  Google Scholar 

  101. Kanazawa I. Adiponectin in metabolic bone disease. Curr Med Chem. 2012;19(32):5481–92.

    PubMed  CAS  Google Scholar 

  102. Palin MF, Bordignon VV, Murphy BD. Adiponectin and the control of female reproductive functions. Vitam Horm. 2012;90:239–87.

    PubMed  CAS  Google Scholar 

  103. Jurimae J, et al. Adiponectin and bone metabolism markers in female rowers: eumenorrheic and oral contraceptive users. J Endocrinol Invest. 2011;34(11):835–9.

    PubMed  CAS  Google Scholar 

  104. O’Donnell E, De Souza MJ. Increased serum adiponectin concentrations in amenorrheic physically active women are associated with impaired bone health but not with estrogen exposure. Bone. 2011;48(4):760–7.

    PubMed  Google Scholar 

  105. Roupas ND, et al. Salivary adiponectin levels are associated with training intensity but not with bone mass or reproductive function in elite Rhythmic Gymnasts. Peptides. 2014;51:80–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Ackerman MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ackerman, K.E., Misra, M. (2015). Neuroendocrine Abnormalities in Female Athletes. In: Gordon, C., LeBoff, M. (eds) The Female Athlete Triad. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7525-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7525-6_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7524-9

  • Online ISBN: 978-1-4899-7525-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics