Skip to main content

Assessment of Bone Health in the Young Athlete

  • Chapter
  • First Online:
Book cover The Female Athlete Triad
  • 1639 Accesses

Abstract

Assessment of bone health in the young athlete requires a detailed history, comprehensive physical examination, and targeted investigative studies. Imaging modalities currently available are all only surrogate measures for assessing fracture risk, and each method has advantages and limitations. For clinical use, dual energy X-ray absorptiometry (DXA) remains the preferred method because of its availability, precision, and low dose of radiation. However, DXA measures two-dimensional areal bone mineral density (aBMD), not three-dimensional volumetric BMD (vBMD), and underestimates true BMD in small subjects. When DXA is used in athletes younger than 20 years of age, Z-scores should be used instead of T-scores, and the diagnosis of osteoporosis should not be made on bone densitometry criteria alone. Fracture rate depends not only on bone mass and density, but also on geometry, microstructure, and strength. High resolution peripheral QCT (HR-pQCT) measures three-dimensional vBMD of an extremity and can also evaluate bone geometry, microarchitecture and strength. Use of HR-pQCT, while currently still limited to research, shows great promise for clinical use, especially in athletes who are more likely to sustain a fracture of an extremity than of the spine or hip. Markers of bone formation and resorption can be used to assess dynamic changes in bone health in response to specific interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aBMD:

Areal bone mineral density

BMC:

Bone mineral content

BMD:

Bone mineral density

DXA:

Dual energy X-ray absorptiometry

FEA:

Finite element analysis

HR-pQCT:

High resolution peripheral quantitative computed tomography

vBMD:

Volumetric bone mineral density

References

  1. Yeager KK, Agostini R, Nattiv A, Drinkwater B. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc. 1993;25(7):775–7.

    Article  PubMed  CAS  Google Scholar 

  2. Nattiv A, Agostini R, Drinkwater B, Yeager KK. The female athlete triad. The inter-relatedness of disordered eating, amenorrhea, and osteoporosis. Clin Sports Med. 1994;13(2):405–18.

    PubMed  CAS  Google Scholar 

  3. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    Article  PubMed  Google Scholar 

  4. Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R. Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res. 2000;15(11):2245–50.

    Article  PubMed  CAS  Google Scholar 

  5. Bachrach LK. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab. 2001;12(1):22–8.

    Article  PubMed  CAS  Google Scholar 

  6. Khosla S, Melton III LJ, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL. Incidence of childhood distal forearm fractures over 30 years: a population-based study. JAMA. 2003;290(11):1479–85.

    Article  PubMed  CAS  Google Scholar 

  7. Faulkner RA, Davison KS, Bailey DA, Mirwald RL, Baxter-Jones AD. Size-corrected BMD decreases during peak linear growth: implications for fracture incidence during adolescence. J Bone Miner Res. 2006;21(12):1864–70.

    Article  PubMed  Google Scholar 

  8. Robinson TL, Snow-Harter C, Taaffe DR, Gillis D, Shaw J, Marcus R. Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res. 1995;10(1):26–35.

    Article  PubMed  CAS  Google Scholar 

  9. Slemenda CW, Johnston CC. High intensity activities in young women: site specific bone mass effects among female figure skaters. Bone Miner. 1993;20(2):125–32.

    Article  PubMed  CAS  Google Scholar 

  10. Wolman RL, Clark P, McNally E, Harries M, Reeve J. Menstrual state and exercise as determinants of spinal trabecular bone density in female athletes. BMJ. 1990;301(6751):516–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Huddleston AL, Rockwell D, Kulund DN, Harrison RB. Bone mass in lifetime tennis athletes. JAMA. 1980;244(10):1107–9.

    Article  PubMed  CAS  Google Scholar 

  12. Carey DE, Golden NH. Bone health and disorders. In: Fisher M, Alderman EM, Kreipe RE, Rosenfeld WD, editors. Textbook of adolescent health care. Elk Grove Village, IL: American Academy of Pediatrics; 2011. p. 728–42.

    Google Scholar 

  13. Lewis MK, Blake GM, Fogelman I. Patient dose in dual x-ray absorptiometry. Osteoporos Int. 1994;4(1):11–5.

    Article  PubMed  CAS  Google Scholar 

  14. Gordon CM, Bachrach LK, Carpenter TO, Crabtree N, El-Hajj Fuleihan G, Kutilek S, et al. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom. 2008;11(1):43–58.

    Article  PubMed  Google Scholar 

  15. Kalkwarf HJ, Zemel BS, Gilsanz V, Lappe JM, Horlick M, Oberfield S, et al. The bone mineral density in childhood study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab. 2007;92(6):2087–99.

    Article  PubMed  CAS  Google Scholar 

  16. Ward KA, Ashby RL, Roberts SA, Adams JE, Zulf MM. UK reference data for the Hologic QDR Discovery dual-energy x ray absorptiometry scanner in healthy children and young adults aged 6-17 years. Arch Dis Child. 2007;92(1):53–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Horlick M, Wang J, Pierson Jr RN, Thornton JC. Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents. Pediatrics. 2004;114(3):e337–45.

    Article  PubMed  Google Scholar 

  18. Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992;7(2):137–45.

    Article  PubMed  CAS  Google Scholar 

  20. Molgaard C, Thomsen BL, Prentice A, Cole TJ, Michaelsen KF. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child. 1997;76(1):9–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95(3):1265–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res. 2005;20(12):2090–6.

    Article  PubMed  Google Scholar 

  23. Clark EM, Tobias JH, Ness AR. Association between bone density and fractures in children: a systematic review and meta-analysis. Pediatrics. 2006;117(2):e291–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Kalkwarf HJ, Laor T, Bean JA. Fracture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA). Osteoporos Int. 2011;22(2):607–16.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Baim S, Leonard MB, Bianchi ML, Hans DB, Kalkwarf HJ, Langman CB, et al. Official Positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Pediatric Position Development Conference. J Clin Densitom. 2008;11(1):6–21.

    Article  PubMed  Google Scholar 

  26. Bachrach LK, Sills IN, Section on Endocrinology. Clinical report-bone densitometry in children and adolescents. Pediatrics. 2011;127(1):189–94.

    Article  PubMed  Google Scholar 

  27. Rauh MJ, Nichols JF, Barrack MT. Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: a prospective study. J Athl Train. 2010;45(3):243–52.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Beck TJ, Ruff CB, Warden KE, Scott Jr WW, Rao GU. Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol. 1990;25(1):6–18.

    Article  PubMed  CAS  Google Scholar 

  29. Faulkner KG, Wacker WK, Barden HS, Simonelli C, Burke PK, Ragi S, et al. Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos Int. 2006;17(4):593–9.

    Article  PubMed  CAS  Google Scholar 

  30. Leslie WD, Pahlavan PS, Tsang JF, Lix LM, Manitoba Bone Density Program. Prediction of hip and other osteoporotic fractures from hip geometry in a large clinical cohort. Osteoporos Int. 2009;20(10):1767–74.

    Article  PubMed  CAS  Google Scholar 

  31. Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002;17(3):363–72.

    Article  PubMed  CAS  Google Scholar 

  32. Golden NH, Abrams SA, and the Committee on Nutrition. American Academy of Pediatrics Clinical Report. Optimizing bone health in children and adolescents. Pediatrics. 2014;134:1–15.

    Google Scholar 

  33. Shepherd JA, Wang L, Fan B, Gilsanz V, Kalkwarf HJ, Lappe J, et al. Optimal monitoring time interval between DXA measures in children. J Bone Miner Res. 2011;26(11):2745–52.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Beaupre GS. Radiation exposure in bone measurements. J Bone Miner Res. 2006;21(5):803; author reply 4.

    Article  PubMed  Google Scholar 

  35. Nikander R, Kannus P, Rantalainen T, Uusi-Rasi K, Heinonen A, Sievanen H. Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings. Osteoporos Int. 2010;21(10):1687–94.

    Article  PubMed  CAS  Google Scholar 

  36. Cheng S, Xu L, Nicholson PH, Tylavsky F, Lyytikainen A, Wang Q, et al. Low volumetric BMD is linked to upper-limb fracture in pubertal girls and persists into adulthood: a seven-year cohort study. Bone. 2009;45(3):480–6.

    Article  PubMed  Google Scholar 

  37. Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, et al. Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2012;27(2):263–72.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Burrows M, Liu D, McKay H. High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int. 2010;21(3):515–20.

    Article  PubMed  CAS  Google Scholar 

  39. Boutroy S, Van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD. Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res. 2008;23(3):392–9.

    Article  PubMed  Google Scholar 

  40. Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23(4):472–81.

    Article  PubMed  CAS  Google Scholar 

  41. Rauchenzauner M, Schmid A, Heinz-Erian P, Kapelari K, Falkensammer G, Griesmacher A, et al. Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab. 2007;92(2):443–9.

    Article  PubMed  CAS  Google Scholar 

  42. Sonneville KR, Gordon CM, Kocher MS, Pierce LM, Ramappa A, Field AE. Vitamin D, calcium, and dairy intakes and stress fractures among female adolescents. Arch Pediatr Adolesc Med. 2012;166(7):595–600.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Institute of Medicine. 2011 Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2011.

    Google Scholar 

  44. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neville H. Golden MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Golden, N.H. (2015). Assessment of Bone Health in the Young Athlete. In: Gordon, C., LeBoff, M. (eds) The Female Athlete Triad. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7525-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7525-6_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7524-9

  • Online ISBN: 978-1-4899-7525-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics