Skip to main content

Optimizing Vascular Patency in Replantation

  • Chapter
  • First Online:
Extremity Replantation

Abstract

Once the decision is made to proceed with replantation of an amputated part, the most critical factor in the short-term success of the replantation is vascular patency. Replantation success rates are approximately 75–80 %, while free tissue transfer enjoys a survival rate which has improved in recent years, with most large series demonstrating success rates of approximately 96–98 % (range 90–100 %), depending upon the flap type and clinical situation. This chapter reviews factors in optimizing microsurgical outcomes in replantation, from preoperative preparation and intraoperative strategies to postoperative care, monitoring, and salvage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lie KH, Barker AS, Ashton MW. A classification system for partial and complete DIEP flap necrosis based on a review of 17,096 DIEP flaps in 693 articles including analysis of 152 total flap failures. Plast Reconstr Surg. 2013;132:1401–8.

    Article  CAS  PubMed  Google Scholar 

  2. Bourget A, Chang JTC, Wu DBS, Chang CJ, Wei FC. Free flap reconstruction in the head and neck region following radiotherapy: a cohort study identifying negative outcome predictors. Plast Reconstr Surg. 2001;127:1901–8.

    Article  Google Scholar 

  3. Yah H, Jackson WD, Songcharoen S, Akdemis O, Li Z, Chen X, Jiang L, Gao W. Vein grafting in fingertip replantations. Microsurgery. 2009;29(4):275–81.

    Article  Google Scholar 

  4. Ketchman LD. Pharmacological alteration in the clotting mechanism: use in microvascular surgery. J Hand Surg. 1978;3:407–15.

    Article  Google Scholar 

  5. Askari M, Fisher C, Weniger FG, Bidic S, Lee A. Anticoagulation therapy in microsurgery: a review. J Hand Surg. 2006;31(5):836–46.

    Article  Google Scholar 

  6. Fu K, Izquierdo R, Hubbard T, Fareed J. Modified crush-avulsion anastomosis model on the rat femoral vein. Microsurgery. 1995;16(8):536–41.

    Article  CAS  PubMed  Google Scholar 

  7. Chen LE, Seaber AV, Korompilias AV, Urbaniak JR. Effects of enoxaparin, standard heparin, and streptokinase on the patency of anastomoses in severely crushed arteries. Microsurgery. 1995;16(10):661–5.

    Article  CAS  PubMed  Google Scholar 

  8. Noguchi M, Matsusaki H, Yamamoto H. Intravenous bolus infusion of heparin for circulatory insufficiency after finger replantation. J Reconstr Microsurg. 1999;15(4):245–53.

    Article  CAS  PubMed  Google Scholar 

  9. Han SK, Lee BI, Kim WK. Topical and systemic anticoagulation in the treatment of absent or compromised venous outflow in replanted fingertips. J Hand Surg. 2000;25(4):659–67.

    Article  CAS  Google Scholar 

  10. Malm K, Dahlback B, Arnljots B. Low molecular-weight heparin (Dalteparin) effectively prevents thrombosis in a rat model of deep arterial injury. Plast Reconstr Surg. 2003;111:1659–66.

    Article  PubMed  Google Scholar 

  11. Ritter EF, Cronan JC, Rudner AM, Serafin D, Klitzman B. Improved microsurgical anastomotic patency with low molecular weight heparin. J Reconstr Microsurg. 1998;14:331–6.

    Article  CAS  PubMed  Google Scholar 

  12. Undas A, Brummel K, Musial J, Mann KG, Szczeklik A. Blood coagulation at the site of microvascular injury: effects of low-dose aspirin. Blood. 2001;98:2423–31.

    Article  CAS  PubMed  Google Scholar 

  13. Cooley BC, Gould JS. Experimental models for evaluating antithrombotic therapies in replantation microsurgery. Microsurgery. 1987;8:230–3.

    Article  CAS  PubMed  Google Scholar 

  14. Chang WHK, Petry JJ. Platelets, prostaglandins, and patency in microvascular surgery. J Microsurg. 1980;2:27–35.

    Article  CAS  PubMed  Google Scholar 

  15. Nearman HS, Herman ML. Toxic effects of colloids in the intensive care unit. Crit Care Clin. 1991;7:713–23.

    CAS  PubMed  Google Scholar 

  16. Disa JJ, Polvora VP, Pusic AL, Singh B, Cordeiro PG. Dextran-related complications in head and neck microsurgery: do the benefits outweigh the risks? A prospective randomized analysis. Plast Reconstr Surg. 2003;112(6):1534–9.

    Article  PubMed  Google Scholar 

  17. Gherardini G, Gurlek A, Cromeens D, Joly GA, Wang BG, Evans GRD. Drug-induced vasodilation: in vitro and in vivo study on the effects of lidocaine and papaverine on rabbit carotid artery. Microsurgery. 1998;18:90–6.

    Article  CAS  PubMed  Google Scholar 

  18. Johns RA, DiFazio CA, Longnecker DE. Lidocaine constricts or dilates rat arteriole in a dose-dependent manner. Anesthesiology. 1985;62:141–4.

    Article  CAS  PubMed  Google Scholar 

  19. Wadstrom J. Studies on traumatic vasospasm in the central ear artery of the rabbit. Scand J Plast Reconstr Surg Hand Surg Suppl. 1990;21:1–42.

    CAS  PubMed  Google Scholar 

  20. Ueda K, Harii K. Comparative study of topical use of vasdilating solutions. Scand J Plast Reconstr Surg Hand Surg. 2003;37:201–7.

    Article  PubMed  Google Scholar 

  21. Casey WJ, Craft RO, Rebecca AM, Smitth AA, Yoon S. Intra-arterial tissue plasminogen activator: an effective adjunct following microsurgical venous thrombosis. Ann Plast Surg. 2007;59:520–5.

    Article  CAS  PubMed  Google Scholar 

  22. Greinacher A, Warkentin TE. The direct thrombin inhibitor hirudin. Thromb Haemost. 2008;99:819–29.

    CAS  PubMed  Google Scholar 

  23. Backman C, Nystrom A, Backman C, Bjerle P. Arterial spasticity and cold intolerance in relation to time after digital replantation. J Hand Surg Br Eur. 1993;18:551–5.

    Article  CAS  Google Scholar 

  24. Betancourt FH, Mah ET, McCabe SJ. Timing of critical thrombosis after replantation surgery of the digits. J Reconstr Microsurg. 1998;14:313–6.

    Article  CAS  PubMed  Google Scholar 

  25. Hagau N, Longrois D. Anesthesia for free vascularized tissue transfer. Microsurgery. 2008;29:161–7.

    Article  Google Scholar 

  26. Hiltunen P, Palve J, Setala L, Mustonen PK, Berg L, Ruokonen E, Uusaro A. The effects of hypotension and norepinephrine on microvascular flap perfusion. J Reconstr Microsurg. 2011;27:419–26.

    Article  PubMed  Google Scholar 

  27. Harris L, Goldstein D, Hofer S, Gilbert R. Impact of vasopressors on outcomes in head and neck free tissue transfer. Microsurgery. 2012;32:15–9.

    Article  PubMed  Google Scholar 

  28. Chen C, Nguyen MD, Bar-Meir E, Hess P, Lin S, Tobias A, Upton J, Lee B. Effects of vasopressor administration on the outcomes of microsurgical breast reconstruction. Ann Plast Surg. 2010;65:28–31.

    Article  CAS  PubMed  Google Scholar 

  29. Kurt E, Ozturk S, Isik S, Zor F. Continuous brachial plexus blockade for digital replantation and toe-to-hand transfers. Ann Plast Surg. 2005;54:24–7.

    Article  CAS  PubMed  Google Scholar 

  30. Su HH, Lui PW, Yu CL, Liew CS, Lin CH, Lun YT, Chanh CH, Yang MW. The effects of continuous axillary brachial plexus block with ropivicaine infusion on skin temperature and survival of crushed fingers after microsurgical replantation. Chang Gung Med J. 2005;28:567–74.

    PubMed  Google Scholar 

  31. Phelps DB, Rutherford RB, Boswick JA. Control of vasospasm following trauma and microvascular surgery. J Hand Surg. 1979;4(2):109–17.

    Article  CAS  Google Scholar 

  32. Chen KT, Mardini S, Chuang DC, Lin CH, Cheng MH, Lin YT, et al. Timing of presentation of the first signs of vascular compromise dictates the salvage outcome of free flap transfers. Plast Reconstr Surg. 2007;120:187–95.

    Article  CAS  PubMed  Google Scholar 

  33. Duffy FJ, Concannon MJ, Gan BS, May JW. Late digital replantation failure: pathophysiology and risk factors. Ann Plast Surg. 1998;40:538–41.

    Article  PubMed  Google Scholar 

  34. Khouri RK, Shaw WW. Monitoring of free flaps with surface temperature recordings: is it reliable? Plast Reconstr Surg. 1992;89:495–9.

    Article  CAS  PubMed  Google Scholar 

  35. Reagan DS, Grundberg AB, George MJ. Clinical evaluation and temperature monitoring in predicting viability in replantations. J Reconstr Microsurg. 1994;10:1–6.

    Article  CAS  PubMed  Google Scholar 

  36. Stirrat CR, Seaber AV, Urbaniak JR, Bright DS. Temperature monitoring in digital replantation. J Hand Surg. 1978;3:342–7.

    Article  CAS  Google Scholar 

  37. Kind GM, Buntic RF, Buncke GM, Cooper TM, Siko PP, Buncke Jr HJ. The effect of an implantable doppler probe on the salvage of microvascular tissue transplants. Plast Reconstr Surg. 1998;101:1268–73.

    Article  CAS  PubMed  Google Scholar 

  38. Paydar K, et al. Implantable venous doppler monitoring in head and neck free flap reconstruction increases the salvage rate. J Plast Reconstr Surg. 2010;125:1129–34.

    Article  CAS  Google Scholar 

  39. Colwell AS, Buntic RF, Brooks D, Wright L, Buncke GM, Buncke HJ. Detection of perfusion disturbances in digit replantation using near infrared spectroscopy and serial quantitative fluoroscopy. J Hand Surg. 2006;31:456–62.

    Article  Google Scholar 

  40. Buntic RF, Brooks D. Standardized protocol for artery-only fingertip replantation. J Hand Surg. 2010;35A:1491–6.

    Article  Google Scholar 

  41. Sharma S, Lin S, Panozzo A, Tepper R, Friedman D. Thumb replantation: a retrospective review of 103 case. Ann Plast Surg. 2005;55:352–6.

    Article  CAS  PubMed  Google Scholar 

  42. Guity A, Young PH, Fischer VW. In search of the “perfect” anastomosis. Microsurgery. 1990;11:5–11.

    Article  CAS  PubMed  Google Scholar 

  43. Akyurek M, Safak T, Kecik A. Fingertip replantation at or distal to the nail base: use of the technique of artery-only anastomosis. Ann Plast Surg. 2001;46:605–12.

    Article  CAS  PubMed  Google Scholar 

  44. Green PA, Shafritz AB. Medicinal leech use in microsurgery. J Hand Surg. 2010;35A:1019–21.

    Article  Google Scholar 

  45. Conforti ML, Connor NP, Heisy DM, Hartig GK. Evaluation of performance characteristics of the medicinal leech (Hirudo medicinalis) for the treatment of venous congestion. Plast Reconstr Surg. 2002;109:228–35.

    Article  PubMed  Google Scholar 

  46. Whitaker IS, Oboumarzouk O, Rozen WM, Naderi N, Balasubramanian SP, Azzoparki EA, Kon M. The efficacy of medicinal leeches in plastic and reconstructive surgery: a systematic review off 277 reported clinical cases. Microsurgery. 2012;32(3):240–50.

    Article  PubMed  Google Scholar 

  47. Dec W. A meta-analysis of success rates for digit replantation. Tech Hand Upper Extrem Surg. 2006;10:124–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Bentz MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Navarrete, A.D., Bentz, M.L. (2015). Optimizing Vascular Patency in Replantation. In: Salyapongse, A., Poore, S., Afifi, A., Bentz, M. (eds) Extremity Replantation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7516-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7516-4_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7515-7

  • Online ISBN: 978-1-4899-7516-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics