Skip to main content

Principles of Musculoskeletal Repair in Extremity Replantation

  • Chapter
  • First Online:
Extremity Replantation

Abstract

Functional replantation relies on the success in the technical performance and intrinsic healing of all components of the injured extremity. The skeletal system forms the foundation upon which the remaining soft-tissue elements survive and act. Strictly adhering to the basic principles of fracture fixation and healing can optimize the initial outcome and can improve the likelihood of success in any revisional surgery. In most cases of extremity replantation, the musculotendinous units will be injured at the level of the tendon, leaving the motor innervation intact. Understanding tendon biology and careful attention to the resulting principles of repair will facilitate post-replant rehabilitation and increase the chance of functional success.

Firmitas, utilitas, venustas” (solid, useful, beautiful)

Marcus Vitruvius Pollio, De Architectura

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simon SR, ed. Orthopaedic basic science. Amer Academy of Orthopaedic, 1994.

    Google Scholar 

  2. Granero-Molto F, Weis JA, Miga MI, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 2009;27(8):1887–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002;84(8):1093–110.

    Article  PubMed  Google Scholar 

  4. Gerstendfeld LC, Alkhiary YM, et al. Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem. 2006;54(11):1215–28.

    Article  Google Scholar 

  5. Green E, Lubahn JD, Evans J. Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv. 2005;14(2):64–72.

    PubMed  Google Scholar 

  6. Gordon L, Monsanto EH. Skeletal stabilization for digital replantation surgery. Use of intraosseous wiring. Clin Orthop Relat Res. 1987;214:72–7.

    PubMed  Google Scholar 

  7. Gingrass RP, Fehring B, Matloub H. Intraosseous wiring of complex hand fractures. Plast Reconstr Surg. 1980;66(3):383–94.

    Article  CAS  PubMed  Google Scholar 

  8. Lister G. Intraosseous wiring of the digital skeleton. J Hand Surg Am. 1978;3(5):427–35.

    Article  CAS  PubMed  Google Scholar 

  9. Zimmerman NB, Weiland AJ. Ninety-ninety intraosseous wiring for internal fixation of the digital skeleton. Orthopedics. 1989;12(1):99–103.

    CAS  PubMed  Google Scholar 

  10. Yim KK, Wei FC. Intraosseous wiring in toe-to-hand transplantation. Ann Plast Surg. 1995;35(1):66–9.

    Article  CAS  PubMed  Google Scholar 

  11. Viegas SF, Ferren EL, Self J, et al. Comparative mechanical properties of various Kirschner wire configurations in transverse and oblique phalangeal fractures. J Hand Surg Am. 1988;13(2):246–53.

    Article  CAS  PubMed  Google Scholar 

  12. Tencer AF, Johnson KD, Kyle RF, et al. Biomechanics of fractures and fracture fixation. Instr Course Lect. 1993;42:19–55.

    CAS  PubMed  Google Scholar 

  13. Touliatos AS, Soucacos PN, Beris AE, et al. Alternative techniques for restoration of bony segments in digital replantation. Acta Orthop Scand Suppl. 1995;264:19–22.

    Article  CAS  PubMed  Google Scholar 

  14. Rafique A, Ghani S, Sadiq M, et al. Kirschner wire pin tract infection rates between percutaneous and buried wires in treating metacarpal and phalangeal fractures. J Coll Phys Surg Pak. 2006;16(8):518–20.

    Google Scholar 

  15. Hargreaves DG, Drew SJ, Eckersley R. Kirschner wire pin tract infection rates: a randomized controlled trial between percutaneous and buried wires. J Hand Surg Br. 2004;29(4):374–6.

    Article  CAS  PubMed  Google Scholar 

  16. Lakshmanan P, Dixit V, Reed MR, et al. Infection rate of percutaneous Kirschner wire fixation for distal radius fractures. J Orthop Surg (Hong Kong). 2010;18(1):85–6.

    Google Scholar 

  17. Whitney TM, Lineaweaver WC, Buncke HJ, et al. Clinical results of bony fixation methods in digital replantation. J Hand Surg Am. 1990;15(2):328–34.

    Article  CAS  PubMed  Google Scholar 

  18. Chen SH, Wei FC, Chen HC, et al. Miniature plates and screws in acute complex hand injury. J Trauma. 1994;37(2):237–42.

    Article  CAS  PubMed  Google Scholar 

  19. Dabezies EJ, Schutte JP. Fixation of metacarpal and phalangeal fractures with miniature plates and screws. J Hand Surg Am. 1986;11(2):283–8.

    Article  CAS  PubMed  Google Scholar 

  20. Jones WW. Biomechanics of small bone fixation. Clin Orthop Relat Res. 1987;214:11–8.

    PubMed  Google Scholar 

  21. Takigami H, Sakano H, Saito T. Internal fixation with the low profile plate system compared with Kirschner wire fixation: clinical results of treatment of metacarpal and phalangeal fractures. Hand Surg. 2010;15(1):1–6.

    Article  PubMed  Google Scholar 

  22. Buckwalter JA, Glimcher MJ, Cooper RR, et al. Bone biology. I: structure, blood supply, cells, matrix, and mineralization. Instr Course Lect. 1996;45:371–86.

    CAS  PubMed  Google Scholar 

  23. Buckwalter JA, Glimcher MJ, Cooper RR, et al. Bone biology. II: formation, form, modeling, remodeling, and regulation of cell function. Instr Course Lect. 1996;45:387–99.

    CAS  PubMed  Google Scholar 

  24. Freeland AE, Rehm JP. Autogenous bone grafting for fractures of the hand. Tech Hand Upper Extrem Surg. 2004;8(2):78–86.

    Article  Google Scholar 

  25. Stevenson S. Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clin Orthop Relat Res. 1998;355:S239–46.

    Google Scholar 

  26. Wang JH-C, Guo Q, Li B. Tendon biomechanics and mechanobiology-a minireview of basic concepts in recent advancements. J Hand Ther. 2012;25(2):133–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sharma P, Maffulli N. Biology of tendon injury: healing, modeling, and remodeling. J Musculoskelet Nueronal Interact. 2006;6(2):181–90.

    CAS  Google Scholar 

  28. Manske PR, Lesker PA. Flexor tendon nutrition. Hand Clin. 1985;1(1):13–24.

    CAS  PubMed  Google Scholar 

  29. Strickland JW. The scientific basis for advances in flexor tendon surgery. J Hand Ther. 2005;18(2):94–110.

    Article  PubMed  Google Scholar 

  30. Tan Q, Lui PP, Lee YW. In vivo identity of tendon stem cells and the roles of stem cells in tendon healing. Stem Cells Dev. 2013;22(23):3128–40.

    Article  PubMed  Google Scholar 

  31. Cooper C. Fundamentals of hand therapy: clinical reasoning and treatment guidelines for common diagnoses of the upper extremity. 2nd ed. St. Louis: Mosby Elsevier; Copyright 2013.

    Google Scholar 

  32. Hitchcock TF, Light TR, Bunch WB, et al. The effect of immediate constrained digital motion on the strength of flexor tendon repairs in chickens. J Hand Surg Am. 1987;12(4):590–5.

    Article  CAS  PubMed  Google Scholar 

  33. Eliasson P, Andersson T, Aspenberg P. Rat Achilles tendon healing: mechanical loading and gene expression. J Appl Physiol. 2009;107(2):399–407.

    Article  PubMed  Google Scholar 

  34. Uchida H, Tohyama H, Nagashima K, et al. Stress deprivation simultaneously induces over-expression of interleukin-1beta, tumor necrosis factor-alpha, and transformation growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendon. J Biomech. 2005;38(4):791–8.

    Article  PubMed  Google Scholar 

  35. Szczodry M, Zhang J, Lim C, et al. Treadmill running exercise results in the presence of numerous myofibroblasts in mouse patellar tendons. J Orthop Res. 2009;27(10):1373–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Groth GN. Pyramid of progressive force exercises to the injured flexor tendon. J Hand Ther. 2004;17(1):31–42.

    Article  PubMed  Google Scholar 

  37. Manske PR, Gelberman RH, Vande Berg JS, Lesker PA. Intrinsic flexor-tendon repair. A morphological study in vitro. J Bone Joint Surg Am. 1984;66(3):385–96.

    CAS  PubMed  Google Scholar 

  38. Zhao C, Amadio PC, Zobitz ME, An KN. Gliding characteristics of tendon repair in canine flexor digitorum profundus tendons. J Orthop Res. 2001;19(4):580–6.

    Article  CAS  PubMed  Google Scholar 

  39. Silva MJ, Boyer MI, Gelberman RH. Recent progress in flexor tendon healing. J Orthop Sci. 2002;7(4):508–14.

    Article  PubMed  Google Scholar 

  40. Davidson CJ, Ganion LR, Gehlsen GM, et al. Rat tendon morphologic and functional changes resulting from soft tissue mobilization. Med Sci Sports Exerc. 1997;29(3):313–9.

    Article  CAS  PubMed  Google Scholar 

  41. Schultz GS, Davidson JM, Kirsner RS, et al. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen. 2011;19(2):134–48.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Strickland JW. Flexor tendon injuries: II. Operative technique. J Am Acad Orthop Surg. 1995;3(1):55–62.

    PubMed  Google Scholar 

  43. Savage R. The search for the ideal tendon repair in zone 2: strand number, anchor points and suture thickness. J Hand Surg Eur Vol. 2014;39(1):20–9.

    Article  CAS  PubMed  Google Scholar 

  44. Taras JS, Raphael JS, Marczyk SC, et al. Evaluation of suture caliber in flexor tendon repair. J Hand Surg Am. 2001;26(6):1100–4.

    Article  CAS  PubMed  Google Scholar 

  45. Shaieb MD, Singer DI. Tensile strengths of various suture techniques. J Hand Surg Br. 1997;22(6):764–7.

    Article  CAS  PubMed  Google Scholar 

  46. Komanduri M, Phillips CS, Mass DP. Tensile strength of flexor tendon repairs in a dynamic cadaver model. J Hand Surg. 1996;21A:605–11.

    Article  Google Scholar 

  47. Silfverskiold IL, Anderson CH. Two new methods of tendon repair: an in vitro evaluation of tensile strength and gap formation. J Hand Surg. 1993;18A:58–65.

    Article  Google Scholar 

  48. Bainbridge LC, Robertson C, Gilles D, et al. A comparison of post-operative mobilization of flexor tendon repairs with “passive flexion-active extension” and “controlled active motion” techniques. J Hand Surg Br. 1994;19(4):517–21.

    Article  CAS  PubMed  Google Scholar 

  49. Hotokezaka S, Manske P. Differences between locking loops and grasping loops: effects on 2-strand core suture. J Hand Surg. 1997;22(6):995–1003.

    Article  CAS  Google Scholar 

  50. Cao Y, Zhu B, Xie RG, et al. Influence of core suture purchase length on strength of four-strand tendon repairs. J Hand Surg. 2006;31(1):107–12.

    Article  Google Scholar 

  51. Tang JB, Zhang Y, Guo R. Core suture purchase affects strength of tendon repairs. J of Hand Surg. 2005;30(6):1262–6.

    Article  Google Scholar 

  52. Trail IA, Powell ES, Noble J. An evaluation of suture materials used in tendon surgery. J Hand Surg. 1989;14B:422–7.

    Article  Google Scholar 

  53. Miller B, Dodds SD, DeMars A, et al. Flexor tendon repairs: the impact of fiberwire on grasping and locking core sutures. J Hand Surg. 2007;32A:591–6.

    Article  Google Scholar 

  54. Viinikainen A, Goransson H, Huovinen K, et al. A comparative analysis of the biomechanical behavior of five flexor tendon core sutures. J Hand Surg. 2004;29B:536–43.

    Article  Google Scholar 

  55. Lawrence TM, Davis TRC. A biomechanical analysis of suture material and their influence on a four-strand flexor tendon repair. J Hand Surg. 2005;30A:836–41.

    Article  Google Scholar 

  56. Vizesi F, Jones C, Lotz N, et al. Stress relaxation and creep: viscoelastic properties of common suture materials used for flexor tendon repair. J Hand Surg. 2008;33A:241–6.

    Article  Google Scholar 

  57. Dona E, Gianoutsos MP, Walsh WR. Optimizing biomechanical performance of the 4-strand cruciate flexor tendon repair. J Hand Surg Am. 2004;29(4):571–80.

    Article  PubMed  Google Scholar 

  58. Viinikainen A, Goransson H, Ryhanen J. Primary flexor tendon repair techniques. Scand J Surg. 2008;97:333–40.

    CAS  PubMed  Google Scholar 

  59. Moriya T, Zhao C, An KN, et al. The effect of epitendinous suture technique on gliding resistance during cyclin motion after flexor tendon repair: a cadaveric study. J Hand Surg Am. 2010;35(4):552–8.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Kubota H, Aoki M, Pruitt DL. Mechanical properties of various circumferential tendon suture techniques. J Hand Surg Br. 1996;21(4):474–80.

    Article  CAS  PubMed  Google Scholar 

  61. Gelberman RH, Boyer MI, Brodt MD, et al. The effect of gap formation at the repair site on the strength and excursion of intrasynovial flexor tendons. An experimental study on the early stages of tendon-healing in dogs. JBJS. 1999;81(7):975–82.

    CAS  Google Scholar 

  62. Zhao C, Amadio PC, Tanaka T, et al. Effect of gap size on gliding resistance after flexor tendon repair. JBJS. 2004;86(11):2482–8.

    Google Scholar 

  63. Silfverskiold KL, May EJ, Tornvall AH. Gap formation during controlled motion after flexor tendon repair in zone II: a prospective clinical study. J Hand Surg Am. 1992;17:539–46.

    Article  CAS  PubMed  Google Scholar 

  64. Reeves ND, Maganaris CN, Ferretti G, et al. Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl Physiol. 2005;98(6):2278–86.

    Article  CAS  PubMed  Google Scholar 

  65. Yasuda T, Kinoshita M, Abe M, et al. Unfavorable effect of knee immobilization on Achilles tendon healing in rabbits. Acta Orthop Scand. 2000;71(1):69–73.

    Article  CAS  PubMed  Google Scholar 

  66. Standard of care: flexor/extensor tendon lacerations of the forearm, wrist, digits. The Brigham and Women’s Hospital, Inc. Department of Rehabilitation Services. Copyright 2007.

    Google Scholar 

  67. Newport ML, Tucker RL. New perspectives on extensor tendon repair and implications for rehabilitation. J Hand Ther. 2005;18(2):175–81.

    Article  PubMed  Google Scholar 

  68. Woo SH, Tsai TM, Kleinert HE, et al. A biomechanical comparison of four extensor tendon repair techniques in zone IV. Plast Reconstr Surg. 2005;115(6):1674–81.

    Article  CAS  PubMed  Google Scholar 

  69. Lee SK, Dubey A, Kim BH, et al. A biomechanical study of extensor tendon repair methods: introduction to the running-interlocking horizontal mattress extensor tendon repair technique. J Hand Surg Am. 2010;35(1):19–23.

    Article  PubMed  Google Scholar 

  70. Matzon JL, Bozentka DJ. Extensor tendon injuries. J Hand Surg. 2010;35A:854–61.

    Article  Google Scholar 

  71. Moore T, Anderson B, Seiler JG. Flexor tendon reconstruction. J Hand Surg. 2010;35(A):1025–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Neil Salyapongse MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kempton, S.J., Steiner, S.R.H., Salyapongse, A.N. (2015). Principles of Musculoskeletal Repair in Extremity Replantation. In: Salyapongse, A., Poore, S., Afifi, A., Bentz, M. (eds) Extremity Replantation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7516-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7516-4_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7515-7

  • Online ISBN: 978-1-4899-7516-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics