Skip to main content

Quadriceps and Hamstrings Strength in Athletes

  • Chapter
  • First Online:
Hamstring and Quadriceps Injuries in Athletes

Abstract

Quadriceps and hamstrings strength is usually quantified by the peak torque during maximal voluntary isokinetic contractions. Ratios of peak torque are used to assess limb asymmetry and compare hamstrings strength relative to quadriceps strength. Peak torque is affected by the mode and speed of testing, and it is important to consider whether or not to normalize peak torque (e.g., to body mass). Positive, but moderate correlations were observed between knee strength and triple hop distance and between knee strength and hip strength in a population of collegiate freshmen football players. No significant correlations were observed between knee strength and Functional Movement Screen™ performance, or between limb symmetry indices based on different strength and functional tests. Deficiencies in quadriceps and hamstrings strength may increase the risk of lower extremity injuries, but large prospective studies are needed to determine which measures of strength are the best predictors for specific injuries and to optimize injury prevention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lund H, Sondergaard K, Zachariassen T, Christensen R, Bulow P, Henriksen M, et al. Learning effect of isokinetic measurements in healthy subjects, and reliability and comparability of Biodex and Lido dynamometers. Clin Physiol Funct Imaging. 2005;25(2):75–82.

    Article  PubMed  CAS  Google Scholar 

  2. Iossifidou A, Baltzopoulos V, Giakas G. Isokinetic knee extension and vertical jumping: are they related? J Sports Sci. 2005;23(10):1121–7.

    Article  PubMed  Google Scholar 

  3. Fillyaw M, Bevins T, Fernandez L. Importance of correcting isokinetic peak torque for the effect of gravity when calculating knee flexor to extensor muscle ratios. Phys Ther. 1986;66(1):23–31.

    PubMed  CAS  Google Scholar 

  4. Lue YJ, Chang JJ, Chen HM, Lin RF, Chen SS. Knee isokinetic strength and body fat analysis in university students. Kaohsiung J Med Sci. 2000;16(10):517–24.

    PubMed  CAS  Google Scholar 

  5. Harbo T, Brincks J, Andersen H. Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. Eur J Appl Physiol. 2012;112(1):267–75.

    Article  PubMed  Google Scholar 

  6. Zvijac JE, Toriscelli TA, Merrick S, Papp DF, Kiebzak GM. Isokinetic concentric quadriceps and hamstring normative data for elite collegiate American football players participating in the NFL Scouting Combine. J Strength Cond Res. 2014;28(4):875–83.

    PubMed  Google Scholar 

  7. Davies MJ, Dalsky GP. Normalizing strength for body size differences in older adults. Med Sci Sports Exerc. 1997;29(5):713–7.

    Article  PubMed  CAS  Google Scholar 

  8. Knapik JJ, Bauman CL, Jones BH, Harris JM, Vaughan L. Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. Am J Sports Med. 1991;19(1):76–81.

    Article  PubMed  CAS  Google Scholar 

  9. Adams D, Logerstedt DS, Hunter-Giordano A, Axe MJ, Snyder-Mackler L. Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther. 2012;42(7):601–14.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Di Stasi S, Myer GD, Hewett TE. Neuromuscular training to target deficits associated with second anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2013;43(11):777. –92, A1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schmitt LC, Paterno MV, Hewett TE. The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):750–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. http://www.biodex.com/sites/default/files/manual-clinical-resources-data.pdf.

  13. Hewett TE, Myer GD, Zazulak BT. Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity. J Sci Med Sport. 2008;11(5):452–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Miller JP, Croce RV. Analyses of isokinetic and closed chain movements for hamstring reciprocal coactivation. J Sport Rehabil. 2007;16(4):319–25.

    PubMed  Google Scholar 

  15. Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental movements as an assessment of function—part 1. N Am J Sports Phys Ther. 2006;1(2):62–72.

    PubMed  PubMed Central  Google Scholar 

  16. Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental movements as an assessment of function—part 2. N Am J Sports Phys Ther. 2006;1(3):132–9.

    PubMed  PubMed Central  Google Scholar 

  17. Perry FT, Koehle MS. Normative data for the functional movement screen in middle-aged adults. J Strength Cond Res. 2013;27(2):458–62.

    Article  PubMed  Google Scholar 

  18. Hewett TE, Myer GD. The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury. Exerc Sport Sci Rev. 2011;39(4):161–6.

    PubMed  PubMed Central  Google Scholar 

  19. Croisier JL, Ganteaume S, Binet J, Genty M, Ferret JM. Strength imbalances and prevention of hamstring injury in professional soccer players—a prospective study. Am J Sports Med. 2008;36(8):1469–75.

    Article  PubMed  Google Scholar 

  20. Cameron M, Adams R, Maher C. Motor control and strength as predictors of hamstring injury in elite players of Australian football. Phys Ther Sport. 2003;4(4):159–66.

    Article  Google Scholar 

  21. Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med. 2009;19(1):3–8.

    Article  PubMed  Google Scholar 

  22. Soderman K, Alfredson H, Pietila T, Werner S. Risk factors for leg injuries in female soccer players: a prospective investigation during one out-door season. Knee Surg Sports Traumatol Arthrosc. 2001;9(5):313–21.

    Article  PubMed  CAS  Google Scholar 

  23. Zvijac JE, Toriscelli TA, Merrick S, Kiebzak GM. Isokinetic concentric quadriceps and hamstring strength variables from the NFL Scouting Combine are not predictive of hamstring injury in first-year professional football players. Am J Sports Med. 2013;41(7):1511–8.

    Article  PubMed  Google Scholar 

  24. Engebretsen AH, Myklebust G, Holme I, Engebretsen L, Bahr R. Intrinsic risk factors for hamstring injuries among male soccer players: a prospective cohort study. Am J Sports Med. 2010;38(6):1147–53.

    Article  PubMed  Google Scholar 

  25. Bennell K, Wajswelner H, Lew P, Schall-Riaucour A, Leslie S, Plant D, et al. Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers. Br J Sports Med. 1998;32(4):309–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Dallinga JM, Benjaminse A, Lemmink KA. Which screening tools can predict injury to the lower extremities in team sports?: a systematic review. Sports Med. 2012;42(9):791–815.

    Article  PubMed  Google Scholar 

  27. Freckleton G, Pizzari T. Risk factors for hamstring muscle strain injury in sport: a systematic review and meta-analysis. Br J Sports Med. 2013;47(6):351–8.

    Article  PubMed  Google Scholar 

  28. Liu H, Garrett WE, Moorman CT, Yu B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: a review of the literature. J Sport Health Sci. 2012;1(2):92–101.

    Article  Google Scholar 

  29. Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42(3):209–26.

    Article  PubMed  Google Scholar 

  30. Draganich LF, Vahey JW. An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces. J Orthop Res. 1990;8(1):57–63.

    Article  PubMed  CAS  Google Scholar 

  31. Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech. 1999;32(4):395–400.

    Article  PubMed  CAS  Google Scholar 

  32. Beynnon BD, Fleming BC. Anterior cruciate ligament strain in-vivo: a review of previous work. J Biomech. 1998;31(6):519–25.

    Article  PubMed  CAS  Google Scholar 

  33. MacWilliams BA, Wilson DR, DesJardins JD, Romero J, Chao EY. Hamstrings cocontraction reduces internal rotation, anterior translation, and anterior cruciate ligament load in weight-bearing flexion. J Orthop Res. 1999;17(6):817–22.

    Article  PubMed  CAS  Google Scholar 

  34. Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA. Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. J Bone Joint Surg Am. 2008;90(4):815–23.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wild CY, Steele JR, Munro BJ. Insufficient hamstring strength compromises landing technique in adolescent girls. Med Sci Sports Exerc. 2013;45(3):497–505.

    Article  PubMed  Google Scholar 

  36. Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24(6):765–73.

    Article  PubMed  CAS  Google Scholar 

  37. Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med. 1999;27(6):699–706.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Hewett PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Willigenburg, N.W., McNally, M.P., Hewett, T.E. (2014). Quadriceps and Hamstrings Strength in Athletes. In: Kaeding, C., Borchers, J. (eds) Hamstring and Quadriceps Injuries in Athletes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7510-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7510-2_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7509-6

  • Online ISBN: 978-1-4899-7510-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics