Skip to main content

Biologics and Patches

  • Chapter
  • First Online:
  • 1638 Accesses

Abstract

Over the past decade, surgical instrumentation and repair constructs have improved the biomechanical strength of rotator cuff repairs, making mechanical failure rare. Most recurrent rotator cuff tears are thought to be due to the compromised biological environment at the relatively avascular healing site. Treatments that augment the biology of rotator cuff healing provide the potential to improve patient outcomes following repair. Most of the research focusing on enhancing tendon healing is in the preclinical stages. The most promising of this research will be reviewed here, but the focus of the chapter will be on modalities available to surgeons now including platelet rich plasma (PRP) and patches. To date, results of PRP augmentation in the setting of large rotator cuff repairs are not very promising. Patches can help when used in the appropriate setting. It is important to note that patient selection is a critical element of improving outcomes. Perhaps the most effective way to currently improve the biological environment of rotator cuff repairs is to optimize medical conditions such as diabetes and smoking cessation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nho SJ, Delos D, Yadav H, et al. Biomechanical and biologic augmentation for the treatment of massive rotator cuff tears. Am J Sports Med. 2010;38(3):619–29. doi:10.1177/0363546509343199.

    Article  PubMed  Google Scholar 

  2. American Academy of Orthopedic Surgeons. Research statistics on rotator cuff repairs, national inpatient sample, 1998–2004. The Agency for Healthcare Research and Quality. 2006.

    Google Scholar 

  3. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86-A(2):219–24.

    PubMed  Google Scholar 

  4. Frank JB, ElAttrache NS, Dines JS, Blackburn A, Crues J, Tibone JE. Repair site integrity after arthroscopic transosseous-equivalent suture-bridge rotator cuff repair. Am J Sports Med. 2008;36(8):1496–503. doi:10.1177/0363546507313574.

    Article  PubMed  Google Scholar 

  5. Barber FA. Platelet-rich plasma for rotator cuff repair. Sports Med Arthrosc Rev. 2013;21(4):199–205. doi:10.1097/JSA.0b013e31828a7c6a.

    Article  Google Scholar 

  6. Castricini R, Longo UG, De Benedetto M, et al. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am J Sports Med. 2011;39(2):258–65. doi:10.1177/0363546510390780.

    Article  PubMed  Google Scholar 

  7. Jo CH, Shin JS, Lee YG, et al. Platelet-rich plasma for arthroscopic repair of large to massive rotator cuff tears: a randomized, single-blind, parallel-group trial. Am J Sports Med. 2013;41(10):2240–8. doi:10.1177/0363546513497925.

    Article  PubMed  Google Scholar 

  8. Bergeson AG, Tashjian RZ, Greis PE, Crim J, Stoddard GJ, Burks RT. Effects of platelet-rich fibrin matrix on repair integrity of at-risk rotator cuff tears. Am J Sports Med. 2012;40(2):286–93. doi:10.1177/0363546511424402.

    Article  PubMed  Google Scholar 

  9. Rodeo SA, Delos D, Williams RJ, Adler RS, Pearle A, Warren RF. The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Am J Sports Med. 2012;40(6):1234–41. doi:10.1177/0363546512442924.

    Article  PubMed  Google Scholar 

  10. Weber SC, Kauffman JI, Parise C, Weber SJ, Katz SD. Platelet-rich fibrin matrix in the management of arthroscopic repair of the rotator cuff: a prospective, randomized, double-blinded study. Am J Sports Med. 2013;41(2):263–70. doi:10.1177/0363546512467621.

    Article  PubMed  Google Scholar 

  11. Aurora A, McCarron JA, van den Bogert AJ, Gatica JE, Iannotti JP, Derwin KA. The biomechanical role of scaffolds in augmented rotator cuff tendon repairs. J Shoulder Elbow Surg. 2012;21(8):1064–71. doi:10.1016/j.jse.2011.05.014.

    Article  PubMed  Google Scholar 

  12. Derwin KA, Badylak SF, Steinmann SP, Iannotti JP. Extracellular matrix scaffold devices for rotator cuff repair. J Shoulder Elbow Surg. 2010;19(3):467–76. doi:10.1016/j.jse.2009.10.020.

    Article  PubMed  Google Scholar 

  13. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30(8):1482–91. doi:10.1016/j.biomaterials.2008.11.040.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Hodde JP, Ernst DMJ, Hiles MC. An investigation of the long-term bioactivity of endogenous growth factor in OASIS Wound Matrix. J Wound Care. 2005;14(1):23–5.

    Article  PubMed  CAS  Google Scholar 

  15. Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 2001;8(1):11–24.

    PubMed  CAS  Google Scholar 

  16. Encalada-Diaz I, Cole BJ, Macgillivray JD, et al. Rotator cuff repair augmentation using a novel polycarbonate polyurethane patch: preliminary results at 12 months’ follow-up. J Shoulder Elbow Surg. 2011;20(5):788–94. doi:10.1016/j.jse.2010.08.013.

    Article  PubMed  Google Scholar 

  17. Valentin JE, Badylak JS, McCabe GP, Badylak SF. Extracellular matrix bioscaffolds for orthopaedic applications. A comparative Histologic study. J Bone Joint Surg Am. 2006;88(12):2673–86. doi:10.2106/JBJS.E.01008.

    Article  PubMed  Google Scholar 

  18. Ricchetti ET, Aurora A, Iannotti JP, Derwin KA. Scaffold devices for rotator cuff repair. J Shoulder Elbow Surg. 2012;21(2):251–65. doi:10.1016/j.jse.2011.10.003.

    Article  PubMed  Google Scholar 

  19. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100. doi:10.1016/j.smim.2007.11.004.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Mikos A, McIntire L, Anderson J, Babensee J. Host response to tissue engineered devices. Adv Drug Deliv Rev. 1998;33(1–2):111–39.

    PubMed  Google Scholar 

  21. Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP. Rotator cuff repair augmentation in a canine model with use of a woven poly-L-lactide device. J Bone Joint Surg. 2009;91(5):1159–71. doi:10.2106/JBJS.H.00775.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cole BJ, Gomoll AH, Yanke A, et al. Biocompatibility of a polymer patch for rotator cuff repair. Knee Surg Sports Traumatol Arthrosc. 2007;15(5):632–7. doi:10.1007/s00167-006-0187-6.

    Article  PubMed  Google Scholar 

  23. Adams JE, Zobitz ME, Reach JS, An K-N, Steinmann SP. Rotator cuff repair using an acellular dermal matrix graft: an in vivo study in a canine model. Arthroscopy. 2006;22(7):700–9. doi:10.1016/j.arthro.2006.03.016.

    Article  PubMed  Google Scholar 

  24. Dejardin LM, Arnoczky SP, Ewers BJ, Haut RC, Clarke RB. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa. Histologic and mechanical evaluation in dogs. Am J Sports Med. 2001;29(2):175–84.

    PubMed  CAS  Google Scholar 

  25. Nicholson GP, Breur GJ, Van Sickle D, Yao JQ, Kim J, Blanchard CR. Evaluation of a cross-linked acellular porcine dermal patch for rotator cuff repair augmentation in an ovine model. J Shoulder Elbow Surg. 2007;16(5 Suppl):S184–90. doi:10.1016/j.jse.2007.03.010.

    Article  PubMed  Google Scholar 

  26. Schlegel TF, Hawkins RJ, Lewis CW, Motta T, Turner AS. The effects of augmentation with Swine small intestine submucosa on tendon healing under tension: histologic and mechanical evaluations in sheep. Am J Sports Med. 2006;34(2):275–80. doi:10.1177/0363546505279912.

    Article  PubMed  Google Scholar 

  27. Schepull T, Kvist J, Andersson C, Aspenberg P. Mechanical properties during healing of Achilles tendon ruptures to predict final outcome: a pilot Roentgen stereophotogrammetric analysis in 10 patients. BMC Musculoskelet Disord. 2007;8(1):116. doi:10.1186/1471-2474-8-116.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Badhe SP, Lawrence TM, Smith FD, Lunn PG. An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elbow Surg. 2008;17(1 Suppl):35S–9. doi:10.1016/j.jse.2007.08.005.

    Article  PubMed  Google Scholar 

  29. Halder A, Zobitz ME, Schultz E, An KN. Structural properties of the subscapularis tendon. J Orthop Res. 2000;18(5):829–34. doi:10.1002/jor.1100180522.

    Article  PubMed  CAS  Google Scholar 

  30. Metcalf MH, Savoie FH, Kellum B. Surgical technique for xenograft (SIS) augmentation of rotator-cuff repairs. Oper Tech Orthop. 2002;12(3):204–8.

    Article  Google Scholar 

  31. Sclamberg SG, Tibone JE, Itamura JM, Kasraeian S. Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa. J Shoulder Elbow Surg. 2004;13(5):538–41. doi:10.1016/S1058274604001193.

    Article  PubMed  Google Scholar 

  32. Soler JA, Gidwani S, Curtis MJ. Early complications from the use of porcine dermal collagen implants (Permacol) as bridging constructs in the repair of massive rotator cuff tears. A report of 4 cases. Acta Orthop Belg. 2007;73(4):432–6.

    PubMed  Google Scholar 

  33. Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am. 2006;88(6):1238–44.

    Article  PubMed  Google Scholar 

  34. Walton JR, Bowman NK, Khatib Y, Linklater J, Murrell GAC. Restore orthobiologic implant: not recommended for augmentation of rotator cuff repairs. J Bone Joint Surg Am. 2007;89(4):786–91. doi:10.2106/JBJS.F.00315.

    Article  PubMed  Google Scholar 

  35. Barber FA, Burns JP, Deutsch A, Labbé MR, Litchfield RB. A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy. 2012;28(1):8–15. doi:10.1016/j.arthro.2011.06.038.

    Article  PubMed  Google Scholar 

  36. Hirooka A, Yoneda M, Wakaitani S, et al. Augmentation with a Gore-Tex patch for repair of large rotator cuff tears that cannot be sutured. J Orthop Sci. 2002;7(4):451–6. doi:10.1007/s007760200078.

    Article  PubMed  Google Scholar 

  37. Audenaert E, Van Nuffel J, Schepens A, Verhelst M, Verdonk R. Reconstruction of massive rotator cuff lesions with a synthetic interposition graft: a prospective study of 41 patients. Knee Surg Sports Traumatol Arthrosc. 2006;14(4):360–4. doi:10.1007/s00167-005-0689-7.

    Article  PubMed  CAS  Google Scholar 

  38. Gulotta LV, Rodeo SA. Growth factors for rotator cuff repair. Clin Sports Med. 2009;28(1):13–23. doi:10.1016/j.csm.2008.09.002.

    Article  PubMed  Google Scholar 

  39. Chan BP, Fu SC, Qin L, Rolf C, Chan KM. Supplementation-time dependence of growth factors in promoting tendon healing. Clin Orthop Relat Res. 2006;448:240–7. doi:10.1097/01.blo.0000205875.97468.e4.

    Article  PubMed  CAS  Google Scholar 

  40. Kovacevic D, Fox AJ, Bedi A, et al. Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair. Am J Sports Med. 2011;39(4):811–9. doi:10.1177/0363546511399378.

    Article  PubMed  Google Scholar 

  41. Galatz L, Rothermich S, VanderPloeg K, Petersen B, Sandell L, Thomopoulos S. Development of the supraspinatus tendon-to-bone insertion: localized expression of extracellular matrix and growth factor genes. J Orthop Res. 2007;25(12):1621–8. doi:10.1002/jor.20441.

    Article  PubMed  Google Scholar 

  42. Carpenter JE, Thomopoulos S, Flanagan CL, DeBano CM, Soslowsky LJ. Rotator cuff defect healing: a biomechanical and histologic analysis in an animal model. J Shoulder Elbow Surg. 1998;7(6):599–605.

    Article  PubMed  CAS  Google Scholar 

  43. Rodeo SA, Potter HG, Kawamura S, Turner AS, Kim HJ, Atkinson BL. Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J Bone Joint Surg. 2007;89(11):2485–97. doi:10.2106/JBJS.C.01627.

    Article  PubMed  Google Scholar 

  44. Seeherman HJ, Archambault JM, Rodeo SA, et al. rhBMP-12 accelerates healing of rotator cuff repairs in a sheep model. J Bone Joint Surg. 2008;90(10):2206–19.

    Article  PubMed  Google Scholar 

  45. Ide J, Kikukawa K, Hirose J, Iyama K-I, Sakamoto H, Mizuta H. The effects of fibroblast growth factor-2 on rotator cuff reconstruction with acellular dermal matrix grafts. Arthroscopy. 2009;25(6):608–16. doi:10.1016/j.arthro.2008.11.011.

    Article  PubMed  Google Scholar 

  46. Uggen JC, Dines J, Uggen CW, et al. Tendon gene therapy modulates the local repair environment in the shoulder. J Am Osteopath Assoc. 2005;105(1):20–1.

    PubMed  Google Scholar 

  47. Hee CK, Dines JS, Dines DM, et al. Augmentation of a rotator cuff suture repair using rhPDGF-BB and a type I bovine collagen matrix in an ovine model. Am J Sports Med. 2011;39(8):1630–9. doi:10.1177/0363546511404942.

    Article  PubMed  Google Scholar 

  48. Ni M, Lui PPY, Rui YF, et al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. J Orthop Res. 2012;30(4):613–9. doi:10.1002/jor.21559.

    Article  PubMed  CAS  Google Scholar 

  49. Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res. 2008;69(7):928–37. doi:10.2460/ajvr.69.7.928.

    Article  PubMed  CAS  Google Scholar 

  50. Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med. 2009;37(11):2126–33. doi:10.1177/0363546509339582.

    Article  PubMed  Google Scholar 

  51. Gulotta LV, Kovacevic D, Montgomery S, Ehteshami JR, Packer JD, Rodeo SA. Stem cells genetically modified with the developmental gene MT1-MMP improve regeneration of the supraspinatus tendon-to-bone insertion site. Am J Sports Med. 2010;38(7):1429–37. doi:10.1177/0363546510361235.

    Article  PubMed  Google Scholar 

  52. Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39(6):1282–9. doi:10.1177/0363546510395485.

    Article  PubMed  Google Scholar 

  53. Yokoya S, Mochizuki Y, Natsu K, Omae H, Nagata Y, Ochi M. Rotator cuff regeneration using a bioabsorbable material with bone marrow-derived mesenchymal stem cells in a rabbit model. Am J Sports Med. 2012;40(6):1259–68. doi:10.1177/0363546512442343.

    Article  PubMed  Google Scholar 

  54. Chung SW, Song BW, Kim YH, Park KU, Oh JH. Effect of platelet-rich plasma and porcine dermal collagen graft augmentation for rotator cuff healing in a rabbit model. Am J Sports Med. 2013;41(12):2909–18. doi:10.1177/0363546513503810.

    Article  PubMed  Google Scholar 

  55. Butler DL, Juncosa-Melvin N, Boivin GP, et al. Functional tissue engineering for tendon repair: a multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res. 2008;26(1):1–9. doi:10.1002/jor.20456.

    Article  PubMed  Google Scholar 

  56. Shea KP, McCarthy MB, Ledgard F, Arciero C, Chowaniec D, Mazzocca AD. Human tendon cell response to 7 commercially available extracellular matrix materials: an in vitro study. Arthroscopy. 2010;26(9):1181–8. doi:10.1016/j.arthro.2010.01.020.

    Article  PubMed  Google Scholar 

  57. Derwin KA, Baker AR, Spragg RK, Leigh DR, Iannotti JP. Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. J Bone Joint Surg Am. 2006;88(12):2665–72.

    Article  PubMed  Google Scholar 

  58. Arce G, Bak K, Bain G, et al. Management of disorders of the rotator cuff: proceedings of the ISAKOS upper extremity committee consensus meeting. 2013;29:1840–50. doi:10.1016/j.arthro.2013.07.265. Elsevier.

Download references

Acknowledgement

Figures courtesy of Gary Gartsman MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua S. Dines MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, P.N., Mistry, J.B., Dines, J.S. (2015). Biologics and Patches. In: Gulotta, L., Craig, E. (eds) Massive Rotator Cuff Tears. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7494-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7494-5_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7493-8

  • Online ISBN: 978-1-4899-7494-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics