Advertisement

Biologics and Patches

  • Phillip N. Williams
  • Jaydev B. Mistry
  • Joshua S. DinesEmail author
Chapter

Abstract

Over the past decade, surgical instrumentation and repair constructs have improved the biomechanical strength of rotator cuff repairs, making mechanical failure rare. Most recurrent rotator cuff tears are thought to be due to the compromised biological environment at the relatively avascular healing site. Treatments that augment the biology of rotator cuff healing provide the potential to improve patient outcomes following repair. Most of the research focusing on enhancing tendon healing is in the preclinical stages. The most promising of this research will be reviewed here, but the focus of the chapter will be on modalities available to surgeons now including platelet rich plasma (PRP) and patches. To date, results of PRP augmentation in the setting of large rotator cuff repairs are not very promising. Patches can help when used in the appropriate setting. It is important to note that patient selection is a critical element of improving outcomes. Perhaps the most effective way to currently improve the biological environment of rotator cuff repairs is to optimize medical conditions such as diabetes and smoking cessation.

Keywords

Rotator Cuff Platelet Rich Plasma Rotator Cuff Tear Rotator Cuff Repair Tendon Repair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

Figures courtesy of Gary Gartsman MD.

References

  1. 1.
    Nho SJ, Delos D, Yadav H, et al. Biomechanical and biologic augmentation for the treatment of massive rotator cuff tears. Am J Sports Med. 2010;38(3):619–29. doi: 10.1177/0363546509343199.PubMedCrossRefGoogle Scholar
  2. 2.
    American Academy of Orthopedic Surgeons. Research statistics on rotator cuff repairs, national inpatient sample, 1998–2004. The Agency for Healthcare Research and Quality. 2006.Google Scholar
  3. 3.
    Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86-A(2):219–24.PubMedGoogle Scholar
  4. 4.
    Frank JB, ElAttrache NS, Dines JS, Blackburn A, Crues J, Tibone JE. Repair site integrity after arthroscopic transosseous-equivalent suture-bridge rotator cuff repair. Am J Sports Med. 2008;36(8):1496–503. doi: 10.1177/0363546507313574.PubMedCrossRefGoogle Scholar
  5. 5.
    Barber FA. Platelet-rich plasma for rotator cuff repair. Sports Med Arthrosc Rev. 2013;21(4):199–205. doi: 10.1097/JSA.0b013e31828a7c6a.CrossRefGoogle Scholar
  6. 6.
    Castricini R, Longo UG, De Benedetto M, et al. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am J Sports Med. 2011;39(2):258–65. doi: 10.1177/0363546510390780.PubMedCrossRefGoogle Scholar
  7. 7.
    Jo CH, Shin JS, Lee YG, et al. Platelet-rich plasma for arthroscopic repair of large to massive rotator cuff tears: a randomized, single-blind, parallel-group trial. Am J Sports Med. 2013;41(10):2240–8. doi: 10.1177/0363546513497925.PubMedCrossRefGoogle Scholar
  8. 8.
    Bergeson AG, Tashjian RZ, Greis PE, Crim J, Stoddard GJ, Burks RT. Effects of platelet-rich fibrin matrix on repair integrity of at-risk rotator cuff tears. Am J Sports Med. 2012;40(2):286–93. doi: 10.1177/0363546511424402.PubMedCrossRefGoogle Scholar
  9. 9.
    Rodeo SA, Delos D, Williams RJ, Adler RS, Pearle A, Warren RF. The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Am J Sports Med. 2012;40(6):1234–41. doi: 10.1177/0363546512442924.PubMedCrossRefGoogle Scholar
  10. 10.
    Weber SC, Kauffman JI, Parise C, Weber SJ, Katz SD. Platelet-rich fibrin matrix in the management of arthroscopic repair of the rotator cuff: a prospective, randomized, double-blinded study. Am J Sports Med. 2013;41(2):263–70. doi: 10.1177/0363546512467621.PubMedCrossRefGoogle Scholar
  11. 11.
    Aurora A, McCarron JA, van den Bogert AJ, Gatica JE, Iannotti JP, Derwin KA. The biomechanical role of scaffolds in augmented rotator cuff tendon repairs. J Shoulder Elbow Surg. 2012;21(8):1064–71. doi: 10.1016/j.jse.2011.05.014.PubMedCrossRefGoogle Scholar
  12. 12.
    Derwin KA, Badylak SF, Steinmann SP, Iannotti JP. Extracellular matrix scaffold devices for rotator cuff repair. J Shoulder Elbow Surg. 2010;19(3):467–76. doi: 10.1016/j.jse.2009.10.020.PubMedCrossRefGoogle Scholar
  13. 13.
    Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30(8):1482–91. doi: 10.1016/j.biomaterials.2008.11.040.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hodde JP, Ernst DMJ, Hiles MC. An investigation of the long-term bioactivity of endogenous growth factor in OASIS Wound Matrix. J Wound Care. 2005;14(1):23–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 2001;8(1):11–24.PubMedGoogle Scholar
  16. 16.
    Encalada-Diaz I, Cole BJ, Macgillivray JD, et al. Rotator cuff repair augmentation using a novel polycarbonate polyurethane patch: preliminary results at 12 months’ follow-up. J Shoulder Elbow Surg. 2011;20(5):788–94. doi: 10.1016/j.jse.2010.08.013.PubMedCrossRefGoogle Scholar
  17. 17.
    Valentin JE, Badylak JS, McCabe GP, Badylak SF. Extracellular matrix bioscaffolds for orthopaedic applications. A comparative Histologic study. J Bone Joint Surg Am. 2006;88(12):2673–86. doi: 10.2106/JBJS.E.01008.PubMedCrossRefGoogle Scholar
  18. 18.
    Ricchetti ET, Aurora A, Iannotti JP, Derwin KA. Scaffold devices for rotator cuff repair. J Shoulder Elbow Surg. 2012;21(2):251–65. doi: 10.1016/j.jse.2011.10.003.PubMedCrossRefGoogle Scholar
  19. 19.
    Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100. doi: 10.1016/j.smim.2007.11.004.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Mikos A, McIntire L, Anderson J, Babensee J. Host response to tissue engineered devices. Adv Drug Deliv Rev. 1998;33(1–2):111–39.PubMedGoogle Scholar
  21. 21.
    Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP. Rotator cuff repair augmentation in a canine model with use of a woven poly-L-lactide device. J Bone Joint Surg. 2009;91(5):1159–71. doi: 10.2106/JBJS.H.00775.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cole BJ, Gomoll AH, Yanke A, et al. Biocompatibility of a polymer patch for rotator cuff repair. Knee Surg Sports Traumatol Arthrosc. 2007;15(5):632–7. doi: 10.1007/s00167-006-0187-6.PubMedCrossRefGoogle Scholar
  23. 23.
    Adams JE, Zobitz ME, Reach JS, An K-N, Steinmann SP. Rotator cuff repair using an acellular dermal matrix graft: an in vivo study in a canine model. Arthroscopy. 2006;22(7):700–9. doi: 10.1016/j.arthro.2006.03.016.PubMedCrossRefGoogle Scholar
  24. 24.
    Dejardin LM, Arnoczky SP, Ewers BJ, Haut RC, Clarke RB. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa. Histologic and mechanical evaluation in dogs. Am J Sports Med. 2001;29(2):175–84.PubMedGoogle Scholar
  25. 25.
    Nicholson GP, Breur GJ, Van Sickle D, Yao JQ, Kim J, Blanchard CR. Evaluation of a cross-linked acellular porcine dermal patch for rotator cuff repair augmentation in an ovine model. J Shoulder Elbow Surg. 2007;16(5 Suppl):S184–90. doi: 10.1016/j.jse.2007.03.010.PubMedCrossRefGoogle Scholar
  26. 26.
    Schlegel TF, Hawkins RJ, Lewis CW, Motta T, Turner AS. The effects of augmentation with Swine small intestine submucosa on tendon healing under tension: histologic and mechanical evaluations in sheep. Am J Sports Med. 2006;34(2):275–80. doi: 10.1177/0363546505279912.PubMedCrossRefGoogle Scholar
  27. 27.
    Schepull T, Kvist J, Andersson C, Aspenberg P. Mechanical properties during healing of Achilles tendon ruptures to predict final outcome: a pilot Roentgen stereophotogrammetric analysis in 10 patients. BMC Musculoskelet Disord. 2007;8(1):116. doi: 10.1186/1471-2474-8-116.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Badhe SP, Lawrence TM, Smith FD, Lunn PG. An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elbow Surg. 2008;17(1 Suppl):35S–9. doi: 10.1016/j.jse.2007.08.005.PubMedCrossRefGoogle Scholar
  29. 29.
    Halder A, Zobitz ME, Schultz E, An KN. Structural properties of the subscapularis tendon. J Orthop Res. 2000;18(5):829–34. doi: 10.1002/jor.1100180522.PubMedCrossRefGoogle Scholar
  30. 30.
    Metcalf MH, Savoie FH, Kellum B. Surgical technique for xenograft (SIS) augmentation of rotator-cuff repairs. Oper Tech Orthop. 2002;12(3):204–8.CrossRefGoogle Scholar
  31. 31.
    Sclamberg SG, Tibone JE, Itamura JM, Kasraeian S. Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa. J Shoulder Elbow Surg. 2004;13(5):538–41. doi: 10.1016/S1058274604001193.PubMedCrossRefGoogle Scholar
  32. 32.
    Soler JA, Gidwani S, Curtis MJ. Early complications from the use of porcine dermal collagen implants (Permacol) as bridging constructs in the repair of massive rotator cuff tears. A report of 4 cases. Acta Orthop Belg. 2007;73(4):432–6.PubMedGoogle Scholar
  33. 33.
    Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am. 2006;88(6):1238–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Walton JR, Bowman NK, Khatib Y, Linklater J, Murrell GAC. Restore orthobiologic implant: not recommended for augmentation of rotator cuff repairs. J Bone Joint Surg Am. 2007;89(4):786–91. doi: 10.2106/JBJS.F.00315.PubMedCrossRefGoogle Scholar
  35. 35.
    Barber FA, Burns JP, Deutsch A, Labbé MR, Litchfield RB. A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy. 2012;28(1):8–15. doi: 10.1016/j.arthro.2011.06.038.PubMedCrossRefGoogle Scholar
  36. 36.
    Hirooka A, Yoneda M, Wakaitani S, et al. Augmentation with a Gore-Tex patch for repair of large rotator cuff tears that cannot be sutured. J Orthop Sci. 2002;7(4):451–6. doi: 10.1007/s007760200078.PubMedCrossRefGoogle Scholar
  37. 37.
    Audenaert E, Van Nuffel J, Schepens A, Verhelst M, Verdonk R. Reconstruction of massive rotator cuff lesions with a synthetic interposition graft: a prospective study of 41 patients. Knee Surg Sports Traumatol Arthrosc. 2006;14(4):360–4. doi: 10.1007/s00167-005-0689-7.PubMedCrossRefGoogle Scholar
  38. 38.
    Gulotta LV, Rodeo SA. Growth factors for rotator cuff repair. Clin Sports Med. 2009;28(1):13–23. doi: 10.1016/j.csm.2008.09.002.PubMedCrossRefGoogle Scholar
  39. 39.
    Chan BP, Fu SC, Qin L, Rolf C, Chan KM. Supplementation-time dependence of growth factors in promoting tendon healing. Clin Orthop Relat Res. 2006;448:240–7. doi: 10.1097/01.blo.0000205875.97468.e4.PubMedCrossRefGoogle Scholar
  40. 40.
    Kovacevic D, Fox AJ, Bedi A, et al. Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair. Am J Sports Med. 2011;39(4):811–9. doi: 10.1177/0363546511399378.PubMedCrossRefGoogle Scholar
  41. 41.
    Galatz L, Rothermich S, VanderPloeg K, Petersen B, Sandell L, Thomopoulos S. Development of the supraspinatus tendon-to-bone insertion: localized expression of extracellular matrix and growth factor genes. J Orthop Res. 2007;25(12):1621–8. doi: 10.1002/jor.20441.PubMedCrossRefGoogle Scholar
  42. 42.
    Carpenter JE, Thomopoulos S, Flanagan CL, DeBano CM, Soslowsky LJ. Rotator cuff defect healing: a biomechanical and histologic analysis in an animal model. J Shoulder Elbow Surg. 1998;7(6):599–605.PubMedCrossRefGoogle Scholar
  43. 43.
    Rodeo SA, Potter HG, Kawamura S, Turner AS, Kim HJ, Atkinson BL. Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J Bone Joint Surg. 2007;89(11):2485–97. doi: 10.2106/JBJS.C.01627.PubMedCrossRefGoogle Scholar
  44. 44.
    Seeherman HJ, Archambault JM, Rodeo SA, et al. rhBMP-12 accelerates healing of rotator cuff repairs in a sheep model. J Bone Joint Surg. 2008;90(10):2206–19.PubMedCrossRefGoogle Scholar
  45. 45.
    Ide J, Kikukawa K, Hirose J, Iyama K-I, Sakamoto H, Mizuta H. The effects of fibroblast growth factor-2 on rotator cuff reconstruction with acellular dermal matrix grafts. Arthroscopy. 2009;25(6):608–16. doi: 10.1016/j.arthro.2008.11.011.PubMedCrossRefGoogle Scholar
  46. 46.
    Uggen JC, Dines J, Uggen CW, et al. Tendon gene therapy modulates the local repair environment in the shoulder. J Am Osteopath Assoc. 2005;105(1):20–1.PubMedGoogle Scholar
  47. 47.
    Hee CK, Dines JS, Dines DM, et al. Augmentation of a rotator cuff suture repair using rhPDGF-BB and a type I bovine collagen matrix in an ovine model. Am J Sports Med. 2011;39(8):1630–9. doi: 10.1177/0363546511404942.PubMedCrossRefGoogle Scholar
  48. 48.
    Ni M, Lui PPY, Rui YF, et al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. J Orthop Res. 2012;30(4):613–9. doi: 10.1002/jor.21559.PubMedCrossRefGoogle Scholar
  49. 49.
    Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res. 2008;69(7):928–37. doi: 10.2460/ajvr.69.7.928.PubMedCrossRefGoogle Scholar
  50. 50.
    Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med. 2009;37(11):2126–33. doi: 10.1177/0363546509339582.PubMedCrossRefGoogle Scholar
  51. 51.
    Gulotta LV, Kovacevic D, Montgomery S, Ehteshami JR, Packer JD, Rodeo SA. Stem cells genetically modified with the developmental gene MT1-MMP improve regeneration of the supraspinatus tendon-to-bone insertion site. Am J Sports Med. 2010;38(7):1429–37. doi: 10.1177/0363546510361235.PubMedCrossRefGoogle Scholar
  52. 52.
    Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39(6):1282–9. doi: 10.1177/0363546510395485.PubMedCrossRefGoogle Scholar
  53. 53.
    Yokoya S, Mochizuki Y, Natsu K, Omae H, Nagata Y, Ochi M. Rotator cuff regeneration using a bioabsorbable material with bone marrow-derived mesenchymal stem cells in a rabbit model. Am J Sports Med. 2012;40(6):1259–68. doi: 10.1177/0363546512442343.PubMedCrossRefGoogle Scholar
  54. 54.
    Chung SW, Song BW, Kim YH, Park KU, Oh JH. Effect of platelet-rich plasma and porcine dermal collagen graft augmentation for rotator cuff healing in a rabbit model. Am J Sports Med. 2013;41(12):2909–18. doi: 10.1177/0363546513503810.PubMedCrossRefGoogle Scholar
  55. 55.
    Butler DL, Juncosa-Melvin N, Boivin GP, et al. Functional tissue engineering for tendon repair: a multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res. 2008;26(1):1–9. doi: 10.1002/jor.20456.PubMedCrossRefGoogle Scholar
  56. 56.
    Shea KP, McCarthy MB, Ledgard F, Arciero C, Chowaniec D, Mazzocca AD. Human tendon cell response to 7 commercially available extracellular matrix materials: an in vitro study. Arthroscopy. 2010;26(9):1181–8. doi: 10.1016/j.arthro.2010.01.020.PubMedCrossRefGoogle Scholar
  57. 57.
    Derwin KA, Baker AR, Spragg RK, Leigh DR, Iannotti JP. Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. J Bone Joint Surg Am. 2006;88(12):2665–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Arce G, Bak K, Bain G, et al. Management of disorders of the rotator cuff: proceedings of the ISAKOS upper extremity committee consensus meeting. 2013;29:1840–50. doi: 10.1016/j.arthro.2013.07.265. Elsevier.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Phillip N. Williams
    • 1
  • Jaydev B. Mistry
    • 2
  • Joshua S. Dines
    • 3
    • 4
    Email author
  1. 1.Department of Orthopaedic SurgeryHospital for Special SurgeryNew YorkUSA
  2. 2.Rutgers New Jersey Medical SchoolNewarkUSA
  3. 3.Sports Medicine and Shoulder ServiceHospital for Special SurgeryNew YorkUSA
  4. 4.Department of Orthopaedic SurgeryWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations