Skip to main content

Overview of Movement Disorders

  • 1255 Accesses

Abstract

Movement disorders are conditions in which there is either a paucity or excess of movements. Classification systems are based on clinical findings, anatomy, pathology, etiology, and genetics, none of which are perfect. Classification by genetic etiology is complicated by heterogeneity, in which many genes cause the same phenotype, as well as pleiotropy, in which mutations in a single gene can result in different phenotypes. Genetic counseling for movement disorders is also complicated by having both Mendelian and multifactorial causes of disease. This section reviews the different types of movement disorders and the issues for genetic counseling.

Keywords

  • Genetic Counseling
  • Movement Disorder
  • Parkinson Disease
  • Multiple System Atrophy
  • Huntington Disease

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4899-7482-2_1
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-1-4899-7482-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)

References

  1. Fahn, S. (2011). Classification of movement disorders. Movement Disorders, 26(6), 947–957.

    PubMed  CrossRef  Google Scholar 

  2. Mori, H., Kondo, T., Yokochi, M., Matsumine, H., Nakagawa-Hattori, Y., Miyake, T., et al. (1998). Pathologic and biochemical studies of juvenile Parkinsonism linked to chromosome 6q. Neurology, 51(3), 890–892.

    PubMed  CrossRef  Google Scholar 

  3. Roxburgh, R. H., Marquis-Nicholson, R., Ashton, F., George, A. M., Lea, R. A., Eccles, D., et al. (2012). The p.Ala510Val mutation in the SPG7 (paraplegin) gene is the most common mutation causing adult onset neurogenetic disease in patients of British ancestry. Journal of Neurology, 260, 1286–1294. epublished Dec 27 2012.

    PubMed  CrossRef  Google Scholar 

  4. Risch, N. J., Bressman, S. B., de Leon, D., Brin, M. F., Burke, R. E., Greene, P. E., et al. (1990). Segregation analysis of idiopathic torsion dystonia in Ashkenazi Jews suggests autosomal dominant inheritance. American Journal of Human Genetics, 46, 533–538.

    PubMed Central  PubMed  Google Scholar 

  5. Sidransky, E., et al. (2009). Multicenter analysis of glucocerebrosidase mutations in Parkinson disease. The New England Journal of Medicine, 361(17), 1651–1661.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  6. Elden, A. C., Kim, H. J., Hart, M. P., Chen-Plotkin, A. S., Johnson, B. S., Fang, X., et al. (2010). Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature, 466(7310), 1069–1075.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  7. Grabowski, M., Zimprich, A., Lorenz-Depiereux, B., Kalscheuer, V., Asmus, F., Gasser, T., et al. (2003). The epsilon-sarcoglycan gene (SGCE), mutated in myoclonus-dystonia syndrome, is maternally imprinted. European Journal of Human Genetics, 11(2), 138–144.

    PubMed  CrossRef  Google Scholar 

  8. Furukawa, Y., Lang, A. E., Trugman, J. M., Bird, T. D., Hunter, A., Sadeh, M., et al. (1998). Gender-related penetrance and de novo GTP-cyclohydrolase I gene mutations in dopa-responsive dystonia. Neurology, 50, 1015–1020.

    PubMed  CrossRef  Google Scholar 

  9. Chen, Y. Z., Hashemi, S. H., Anderson, S. K., Huang, Y., Moreira, M. C., Lynch, D. R., et al. (2006). Senataxin, the yeast Sen1p orthologue: characterization of a unique protein in which recessive mutations cause ataxia and dominant mutations cause motor neuron disease. Neurobiology of Disease, 23(1), 97–108.

    PubMed  CrossRef  Google Scholar 

  10. Pierson, T. M., Adams, D., Bonn, F., Martinelli, P., Cherukuri, P. F., Teer, J. K., et al. (2011). Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genetics, 7(10), e1002325. doi:10.1371/journal.pgen.1002325. Epub 2011 Oct 13.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  11. Lise, S., Clarkson, Y., Perkins, E., Kwasniewska, A., Sadighi Akha, E., et al. (2012). Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development. PLoS Genetics, 8(12), e1003074. doi:10.1371/journal.pgen.1003074. Epub 2012 Dec 6.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  12. Lesage, S., Leutenegger, A. L., Ibanez, P., Janin, S., Lohmann, E., Dürr, A., et al. (2005). LRRK2 haplotype analyses in European and North African families with Parkinson disease: A common founder for the G2019S mutation dating from the 13th century. The American Journal of Human Genetics, 77(2), 330–332.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Bower .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bower, M., Tuite, P. (2015). Overview of Movement Disorders. In: Goldman, J. (eds) Genetic Counseling for Adult Neurogenetic Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7482-2_1

Download citation