Skip to main content

Variation in Mobility and Anatomical Responses in the Late Pleistocene

  • Chapter
  • First Online:
Reconstructing Mobility

Abstract

Diachronic changes in European Late Pleistocene humans indicate anatomical changes in the lower limb associated with decreased mobility. A more global perspective suggests that similar trends toward reduced mobility occurred simultaneously in other parts of the Old World, but Late Pleistocene populations in non-European regions demonstrate significant variation in femoral and tibial cross-sectional geometric properties that are inconsistent with behavioral interpretations.

Samples of Late Pleistocene early modern humans from Europe, Northern Africa, and Asia are analyzed to assess regional variation in postcranial trends. Cross-sectional geometric properties for midshaft femora and tibiae and measures of articular surface areas and mechanical efficiency are evaluated between samples.

Regional Late Pleistocene samples are differentiated by measures of diaphyseal robusticity. Northern African samples are uniquely robust, particularly at the level of the midshaft tibia. Relative to other regional samples, the Asian sample has distinctly gracile femoral and tibial diaphyses. Although this may indicate reduced mobility, this sample also demonstrates relatively high mechanical efficiency at the knees and hips, which may point to an alternative mechanism for counteracting loading on the lower limbs from high mobility or terrain differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DD (1990) Lang Rongrien Rockshelter: a Pleistocene-early Holocene archaeological site from Krabi, Southwestern Thailand. University Museum, Philadelphia

    Google Scholar 

  • Baba H, Endo B (1982) Postcranial skeleton of the Minatogawa man. In: Suzuki H, Hanihara K (eds) The Minatogawa man. The Upper Pleistocene Man from the Island of Okinawa. Bulletin of the University Museum 19. University of Tokyo, Tokyo, pp 61–195

    Google Scholar 

  • Bar-Yosef O (2002) The Upper Paleolithic revolution. Annu Rev Anthropol 31:353–393

    Article  Google Scholar 

  • Biewener AA, Bertram JEA (1993) Skeletal strain patterns in relation to exercise training during growth. J Exp Biol 185:51–69

    CAS  PubMed  Google Scholar 

  • Biewener AA, Thomason J, Goodship AE, Lanyon LE (1981) The mechanics of horse locomotion-strains developed in the limb bones at different gaits. J Biomech 14:487

    Article  Google Scholar 

  • Brauer G (1988) Osteometrie. In: Knussman R (ed) Anthropologie I. Fischer, Stuttgart, pp 160–232

    Google Scholar 

  • Burr DB, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E, Simkin A (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410

    Article  CAS  PubMed  Google Scholar 

  • Carlson KJ, Judex S (2007) Increased non-linear locomotion alters diaphyseal bone shape. J Exp Biol 210:3117–3125

    Article  PubMed  Google Scholar 

  • Carter DR, Beaupré GS (2001) Skeletal function and form. Cambridge University Press, New York

    Google Scholar 

  • Carter DR, Wong M (1990) Mechanical stresses in joint morphogenesis and maintenance. In: Mow VC, Radcliffe A, Woo SLY (eds) Biomechanics of diarthrodial joints. Springer, New York, pp 155–174

    Chapter  Google Scholar 

  • Churchill SE, Rhodes JA (2006) How strong were the Neandertals? Leverage and muscularity at the shoulder and elbow in Mousterian foragers. Period Biol 4:457–470

    Google Scholar 

  • Churchill SE, Formicola V, Holliday TW, Holt BW, Schumann BA (2000) The Upper Palaeolithic population of Europe in an evolutionary perspective. In: Roebroeks W, Mussi M, Svoboda J, Fennema K (eds) Hunters of the Golden Age: the mid Upper Paleolithic of Eurasia 30,000-20,000 BP. University of Leiden, Leiden, pp 31–58

    Google Scholar 

  • Close AE, Wendorf F (1990) North Africa at 18000 BP. In: Gamble C, Soffer O (eds) The world at 18,000 BP, vol 2, Low latitudes. Unwin Hyman, London, pp 41–53

    Google Scholar 

  • Cochran GVB (1972) Implantation of strain gages on bone in vivo. J Biomech 5:119–123

    Article  CAS  PubMed  Google Scholar 

  • Cochran GVB (1974) A method for direct recording of electromechanical data from skeletal bone in living animals. J Biomech 7:563–565

    Article  PubMed  Google Scholar 

  • Daegling D (2002) Estimation of torsional rigidity in primate long bones. J Hum Evol 43:229–239

    Article  PubMed  Google Scholar 

  • Eckstein F, Hudelmaier M, Cahue S, Marshall M, Sharma L (2009) Medial-to-lateral ratio of tibiofemoral subchondral bone area is adapted to alignment and mechanical load. Calcif Tissue Int 84:186–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700

    Article  CAS  PubMed  Google Scholar 

  • Eschman PN (1992) SLCOMM version 1.6. Eschman Archeological Services, Albuquerque

    Google Scholar 

  • Fehling PC, Alekel L, Clasey J, Rector A, Stillman RJ (1995) A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone 17:205–210

    Article  CAS  PubMed  Google Scholar 

  • Forwood MR, Turner CH (1994) The response of rat tibiae to incremental bouts of mechanical loading—a quantum concept for bone formation. Bone 15:603–609

    Article  CAS  PubMed  Google Scholar 

  • Forwood MR, Turner CH (1995) Skeletal adaptations to mechanical usage—results from tibial loading studies in rats. Bone 17:S197–S205

    Google Scholar 

  • Frost HM (1997) Why do marathon runners have less bone than weight lifters? A vital biomechanical view and explanation. Bone 20:183–189

    Article  CAS  PubMed  Google Scholar 

  • Goodship AE, Lawes TJ, Rubin CT (2009) Low-magnitude high-frequency mechanical signals accelerate and augment endochondral bone repair: preliminary evidence of efficacy. J Orthop Res 27:922–930

    Article  PubMed Central  PubMed  Google Scholar 

  • Gorman CF (1970) Excavations at Spirit Cave, North Thailand: some interim interpretations. Asian Perspect 13:70–107

    Google Scholar 

  • Haapasalo H, Sievanen H, Kannus P, Oja P, Vuori I (1996) Humeral dimensions after long term unilateral loading. A DXA study of Finnish competitive tennis players. Bone 18:106S

    Article  Google Scholar 

  • Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW (1999) A chondral modeling theory revisited. J Theor Biol 201:201–208

    Article  CAS  PubMed  Google Scholar 

  • Hershkovitz I, Speirs MS, Frayer D, Nadel D, Wish-Baratz S, Arensburg B (1995) Ohalo II H2: A 19,000-year-old skeleton from a water-logged site at the Sea of Galilee, Israel. Am J Phys Anthropol 96:215–234

    Article  CAS  PubMed  Google Scholar 

  • Hillman G, Madeys AE, Hather J (1989) Wild plant foods and diet at Late Paleolithic Wadi Kubbaniya: the evidence from charred remains. In: Wendorf F, Schild R, Close AE (eds) The prehistory of Wadi Kubbaniya, vol 2, Stratigraphy, paleoeconomy and environment. SMU Press, Dallas, pp 15–100

    Google Scholar 

  • Holt BM (1999) Biomechanical evidence of decreased mobility in Upper Paleolithic and Mesolithic Europe. Ph.D. Dissertation, University of Missouri, Columbia

    Google Scholar 

  • Holt BM (2003) Mobility in Upper Paleolithic and Mesolithic Europe: evidence from the lower limb. Am J Phys Anthropol 122:200–215

    Article  PubMed  Google Scholar 

  • Holt BM, Formicola V (2008) Hunters of the Ice Age: the biology of Upper Paleolithic people. Yearb Phys Anthropol 51:70–99

    Article  Google Scholar 

  • Holt BM, Mussi M, Churchill SE, Formicola V (2000) Biological and cultural trends in Upper Paleolithic Europe. Riv Antropol 78:179–192

    Google Scholar 

  • Jones HN, Priest JD, Hayes WC, Tichenor CC, Nagel DA (1977) Humeral hypertrophy in response to exercise. J Bone Joint Surg 59A:204–208

    Google Scholar 

  • Judex S, Carlson K (2009) Is bone’s response to mechanical signals dominated by gravitational loading? Med Sci Sports Exerc 41:2037–2043

    Article  PubMed  Google Scholar 

  • Judex S, Rubin CT (2010) Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J Musculoskelet Neuronal Interact 10:3–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Judex S, Zernicke RF (2000a) High-impact exercise and growing bone: relation between high strain rates and enhanced bone formation. J Appl Physiol 88:2183–2191

    CAS  PubMed  Google Scholar 

  • Judex S, Zernicke RF (2000b) Does the mechanical milieu associated with high-speed running lead to adaptive changes in diaphyseal growing bone? Bone 26:153–159

    Article  CAS  PubMed  Google Scholar 

  • Kelly RL (1992) Mobility/sedentism: concepts, archaeological measures and effects. Annu Rev Anthropol 21:43–66

    Article  Google Scholar 

  • Kelly RL (1995) The foraging spectrum: diversity in hunter-gatherer lifeways. Smithsonian Institution, Washington, DC

    Google Scholar 

  • King JW, Brelsford HJ, Tullow HS (1969) Analysis of the pitching arm of the professional baseball pitcher. Clin Orthop Relat Res 67:116–123

    CAS  PubMed  Google Scholar 

  • Lahr MM, Arensburg B (1995) Skeletal robusticity in the Epipaleolithic of North Africa and the Levant. Paléoorient 21:87–96

    Article  Google Scholar 

  • Lanyon LE, O’Connor JA (1980) Adaptation of bone artificially loaded at high and low physiological strain rates. J Physiol (Lond) 303:P36

    Google Scholar 

  • Lanyon LE, Rubin CT (1984) Static vs. dynamic loads as an influence on bone remodeling. J Biomech 17:897–905

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE, Hampson WGJ, Goodship AE, Shah JS (1975) Bone deformation recorded in vivo from strain gauges attached to human tibial shaft. Acta Orthop Scand 46:256–268

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE, Magee PT, Baggott DG (1979) Relationship of functional stress and strain to the processes of bone remodeling—experimental study on the sheep radius. J Biomech 12:593–600

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE, Goodship AE, Pye CJ, Macfie JH (1982) Mechanically adaptive bone remodeling. J Biomech 15:141–154

    Article  CAS  PubMed  Google Scholar 

  • Lazenby RA, Cooper DML, Angus A, Hallgrímsson B (2008) Articular constraint, handedness, and directional asymmetry in the human second metacarpal. J Hum Evol 54:875–885

    Article  PubMed  Google Scholar 

  • Lieberman DE, Pearson OM (2001) Trade-off between modeling and remodeling responses to loading in the mammalian limb. Bull Mus Comp Zool 156:269–282

    Google Scholar 

  • Lieberman DE, Devlin MJ, Pearson OM (2001) Articular area responses to mechanical loading: effects of exercise, age and skeletal location. Am J Phys Anthropol 116:266–277

    Article  CAS  PubMed  Google Scholar 

  • Lieberman DE, Polk JD, Demes B (2004) Predicting long bone loading from cross-sectional geometry. Am J Phys Anthropol 123:156–171

    Article  PubMed  Google Scholar 

  • Marchi D (2008) Relationships between lower limb cross-sectional geometry and mobility: the case of a Neolithic sample from Italy. Am J Phys Anthropol 137:188–200

    Article  PubMed  Google Scholar 

  • Marchi D, Shaw C (2011) Variation in fibular robusticity reflects variation in mobility patterns. J Hum Evol 61:609–616

    Article  PubMed  Google Scholar 

  • Marchi D, Sparacello VS, Holt BM, Formicola V (2006) Biomechanical approach to the reconstruction of activity patterns in Neolithic western Liguria, Italy. Am J Phys Anthropol 131:447–455

    Article  PubMed  Google Scholar 

  • Marchi D, Sparacello V, Shaw C (2011) Mobility and lower limb robusticity of a pastoralist Neolithic population from North-western Italy. In: Pinhasi R, Stock JT (eds) Human bioarchaeology of the transition to agriculture. Wiley-Blackwell, West Sussex, pp 317–346

    Chapter  Google Scholar 

  • Miller JA, Gross MM (1998) Locomotor advantages of Neandertal skeletal morphology at the knee and ankle. J Biomech 31:355–361

    Article  CAS  PubMed  Google Scholar 

  • Mosley JR, March BM, Lynch J, Lanyon LE (1997) Strain magnitude related changes in whole bone architecture in growing rats. Bone 20:191–198

    Article  CAS  PubMed  Google Scholar 

  • Myers MJ, Steudel K (1985) Effect of limb mass and its distribution on the energetic cost of running. J Exp Biol 116:363–373

    CAS  PubMed  Google Scholar 

  • Nordin M, Frankel VH (2000) Basic biomechanics of the musculoskeletal system, 3rd edn. Lippincott Williams & Wilkins, New York

    Google Scholar 

  • O’Connor JA, Lanyon LE (1982) The effect of strain rate on mechanically adaptive bone remodeling. Orthop Trans 6:240–241

    Google Scholar 

  • Plochocki J (2004) Bilateral variation in limb articular surface dimensions. Am J Hum Biol 16:328–333

    Article  PubMed  Google Scholar 

  • Plochocki J, Riscigno CJ, Garcia M (2006) Functional adaptation of the femoral head to voluntary exercise. Anat Rec A Discov Mol Cell Evol Biol 288A:776–781

    Article  Google Scholar 

  • Raichlen DA, Armstrong H, Lieberman DE (2011) Calcaneus length determines running economy: implications for endurance running performance in modern humans and Neandertals. J Hum Evol 60:299–308

    Article  PubMed  Google Scholar 

  • Robinson TL, Snow-Harter C, Taaffe DR, Gillis D, Shaw J, Marcus R et al (1995) Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res 10:26–35

    Article  CAS  PubMed  Google Scholar 

  • Robling AG, Duijvelaar KM, Geevers JV, Ohashi N, Turner CH (2001) Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone 29:105–113

    Article  CAS  PubMed  Google Scholar 

  • Rubin CT, Lanyon LE (1984) Regulation of bone-formation by applied dynamic loads. J Bone Joint Surg 66A:397–402

    Google Scholar 

  • Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB (1987) Sexual dimorphism in human lower limb bone structure: relationship of subsistence strategy and sexual division of labor. J Hum Evol 16:391–416

    Article  Google Scholar 

  • Ruff CB (1991) Climate and body shape in hominid evolution. J Hum Evol 21:81–105

    Article  Google Scholar 

  • Ruff CB (1994) Morphological adaptation to climate in modern and fossil hominids. Yearb Phys Anthropol 37:65–107

    Article  Google Scholar 

  • Ruff CB (1995) Biomechanics of the hip and birth in early Homo. Am J Phys Anthropol 98:527–574

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB (1999) Skeletal structure and behavioral patterns of prehistoric Great Basin populations. In: Hemphill BE, Larsen CS (eds) Prehistoric lifeways in the Great Basin Wetlands: bioarchaeological reconstruction and interpretation. University of Utah Press, Salt Lake City, pp 290–320

    Google Scholar 

  • Ruff CB (2000) Body size, body shape, and long bone strength in modern humans. J Hum Evol 38:269–290

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB (2002) Long bone articular and diaphyseal structure in Old World monkeys and apes. I: locomotor effects. Am J Phys Anthropol 119:305–342

    Article  PubMed  Google Scholar 

  • Ruff CB, Hayes WC (1983) Cross-sectional geometry of Pecos Pueblo femora and tibiae-a biomechanical investigation. 2. Sex, age and side differences. Am J Phys Anthropol 60:383–400

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB, Scott WW, Liu AYC (1991) Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults. Am J Phys Anthropol 86:397–413

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB, Trinkaus E, Walker A, Larsen CS (1993) Postcranial robusticity in Homo. I: temporal trends and mechanical interpretation. Am J Phys Anthropol 91:21–53

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB, Holt BM, Sládek V, Berner M, Murphy WA Jr, zur Nedden D et al (2006) Body size, body proportions, and mobility in the Tyrolean “Iceman”. J Hum Evol 51:91–101

    Article  PubMed  Google Scholar 

  • Saxon LK, Robling AG, Alam I, Turner CH (2005) Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 36:454–464

    Article  CAS  PubMed  Google Scholar 

  • Shackelford LL (2005) Regional variation in the postcranial robusticity of Late Upper Paleolithic humans. Ph.D. Dissertation, Washington University, St. Louis

    Google Scholar 

  • Shackelford LL (2007) Regional variation in the postcranial robusticity of Late Upper Paleolithic humans. Am J Phys Anthropol 133:655–668

    Article  PubMed  Google Scholar 

  • Shaw C, Stock J (2009) Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes. Am J Phys Anthropol 140:160–172

    Article  PubMed  Google Scholar 

  • Shaw C, Stock J (2011) The influence of body proportions on femoral and tibial midshaft shape in hunter-gatherers. Am J Phys Anthropol 144:22–29

    Article  PubMed  Google Scholar 

  • Smith P (1979) Regional diversity in Epipaleolithic populations. Ossa 6:243–250

    Google Scholar 

  • Stock J (2006) Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy. Am J Phys Anthropol 131:194–204

    Article  CAS  PubMed  Google Scholar 

  • Stock J, Pfeiffer S (2001) Linking structural variability in long bone diaphyses to habitual behaviors: foragers from the southern African Later Stone Age and the Andaman Islands. Am J Phys Anthropol 115:337–348

    Article  CAS  PubMed  Google Scholar 

  • Stock J, Pfeiffer S (2004) Long bone robusticity and subsistence behaviour among Later Stone Age foragers of the forest and fynbos biomes of South Africa. J Archaeol Sci 31:999–1013

    Article  Google Scholar 

  • Stock J, Shaw C (2007) Which measures of diaphyseal robusticity are robust? A comparison of external methods of quantifying the strength of long bone diaphyses to cross-sectional geometric properties. Am J Phys Anthropol 134:412–423

    Article  PubMed  Google Scholar 

  • Straus LG (1995) The Upper Paleolithic of Europe: an overview. Evol Anthropol 4:4–16

    Article  Google Scholar 

  • Trinkaus E, Churchill SE (1988) Neandertal radial tuberosity orientation. Am J Phys Anthropol 75:15–21

    Article  CAS  PubMed  Google Scholar 

  • Trinkaus E, Rhoads ML (1999) Neandertal knees: power lifters in the Pleistocene? J Hum Evol 37:833–859

    Article  CAS  PubMed  Google Scholar 

  • Trinkaus E, Villemeur I (1991) Mechanical advantages of the Neandertal thumb in flexion: a test of an hypothesis. Am J Phys Anthropol 84:249–260

    Article  CAS  PubMed  Google Scholar 

  • Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407

    Article  CAS  PubMed  Google Scholar 

  • van Andel TH, Davies W, Weniger B (2003) The human presence in Europe during the Last Glacial period I: migrations and the changing climate. In: van Andel TH, Davies W (eds) Neanderthals and modern humans in the EUROPEAN Landscape during the Last Glaciation. University of Cambridge, Cambridge, pp 31–56

    Google Scholar 

  • Weiss E (2003) Effects of rowing on humeral strength. Am J Phys Anthropol 121:293–302

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to Kris J. Carlson and Damiano Marchi for initiating the symposium leading to this collection of ideas on mobility. Thank you to two anonymous reviewers whose comments greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura L. Shackelford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shackelford, L.L. (2014). Variation in Mobility and Anatomical Responses in the Late Pleistocene. In: Carlson, K., Marchi, D. (eds) Reconstructing Mobility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7460-0_9

Download citation

Publish with us

Policies and ethics