Skip to main content

Activity, “Body Shape,” and Cross-Sectional Geometry of the Femur and Tibia

  • Chapter
  • First Online:

Abstract

Both bi-iliac breadth and stature are considered key aspects of “body shape,” vary ecogeographically, and have been proposed to influence femoral midshaft shape, complicating interpretations of “activity.” This chapter explores patterns of variation in cross-sectional geometry [especially shape, as measured by I max/I min or midshaft anteroposterior (AP) and mediolateral (ML) diameters] in the femur and tibia using three data sets that comprise a large amount of external measurements and some data from cross-sectional geometry. These data show that the midshaft shapes of the femur and tibia are only weakly correlated: r = −0.12 for AP/ML diameters; r = 0.33 for I max/I min ratios. Femoral midshaft shape is weakly, but significantly, associated with bi-iliac breadth and the ratio of bi-iliac breadth to femoral length in some, but not all, data sets. The results indicate that variation in “body shape” does not drive the low correlations observed between femoral and tibial midshaft shapes. We should look to other factors to explain the mismatch.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amtmann VE (1971) Mechanical stress, functional adaptation and the variation in structure of the human femur diaphysis. Ergeb Anat Entwicklungsgesch 441:1–89

    Google Scholar 

  • Bridges PS (1989) Changes in activities with the shift to agriculture in the southeastern United States. Curr Anthropol 30:385–394

    Article  Google Scholar 

  • Burr DB, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E, Simkin A (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410

    Article  CAS  PubMed  Google Scholar 

  • Carlson KJ, Grine FE, Pearson OM (2007) Robusticity and sexual dimorphism in the postcranium of modern hunter-gatherers from Australia. Am J Phys Anthropol 134:9–23

    Article  PubMed  Google Scholar 

  • Cowgill LW (2014) Femoral diaphyseal shape and mobility: an ontogenetic perspective. In: Carlson KJ, Marchi D (eds) Reconstructing mobility: environmental, behavioral, and morphological determinants. Springer, New York

    Google Scholar 

  • Daneshvari SR (2011) Effects of body mass on the skeleton. Ph.D. Dissertation, University of New Mexico, Albuquerque

    Google Scholar 

  • Demes B (2007) In vivo bone strain and bone functional adaptation. Am J Phys Anthropol 133:717–722

    Article  PubMed  Google Scholar 

  • Demes B, Carlson KJ (2009) Locomotor variation and bending regimes of capuchin limb bones. Am J Phys Anthropol 139:558–571

    Article  PubMed  Google Scholar 

  • Demes B, Stern JTJ, Hausman MR, Larson SG, McLeod KJ, Rubin CT (1998) Patterns of strain in the macaque ulna during functional activity. Am J Phys Anthropol 106:87–100

    Article  CAS  PubMed  Google Scholar 

  • Demes B, Qin Y-X, Stern JTJ, Larson SG, Rubin CT (2001) Patterns of strain in the macaque tibia during functional activity. Am J Phys Anthropol 116:257–265

    Article  CAS  PubMed  Google Scholar 

  • Endo B, Kimura T (1970) Postcranial skeleton of the Amud man. In: Suzuki H, Takai F (eds) The Amud man and his cave site. Academic Press of Japan, Tokyo, pp 231–406

    Google Scholar 

  • Grine FE, Jungers WL, Tobias PV, Pearson OM (1995) Fossil Homo femur from Berg Aukas, northern Namibia. Am J Phys Anthropol 97:151–185

    Article  CAS  PubMed  Google Scholar 

  • Holt BM (2003) Mobility in Upper Paleolithic and Mesolithic Europe: evidence from the lower limb. Am J Phys Anthropol 122:200–215

    Article  PubMed  Google Scholar 

  • Jurmain R (1999) Stories from the skeleton: behavioral reconstruction in human osteology. Gordon and Breach, Amsterdam

    Google Scholar 

  • Jurmain R, Alves Cardoso F, Henderson C, Villotte S (2012) Bioarchaeology’s holy grail: the reconstruction of activity. In: Grauer AL (ed) A companion to paleopathology. Wiley-Blackwell, Chichester, West Sussex, pp 531–552

    Chapter  Google Scholar 

  • Kimura T (1971) Cross-section of human lower leg bones viewed from the strength of materials. J Anthropol Soc Nippon 79:323–336

    Article  Google Scholar 

  • Kimura T (1974) Mechanical characteristics of human lower leg bones. J Fac Sci Univ Tokyo V Anthropol 4:319–393

    Google Scholar 

  • Kimura T, Amtmann E (1984) Distribution of mechanical robustness in the human femoral shaft. J Biomech 17:41–46

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Takahashi H (1982) Mechanical properties of cross section of lower limb bones in Jomon man. J Anthropol Soc Nippon 90:105–118

    Article  Google Scholar 

  • Larsen CS, Ruff C (2011) ‘An external agency of considerable importance’: the stresses of agriculture in the foraging-to-farming transition in eastern North America. In: Pinhasi R, Stock JT (eds) Human bioarchaeology of the transition to agriculture. Wiley-Blackwell, Chichester, West Sussex, pp 293–316

    Chapter  Google Scholar 

  • Larsen CS, Crosby AW, Griffin MC, Hutchinson DL, Ruff CB, Russell KF, Schoeninger MJ, Sering LE, Simpson SW, Takács JL, Teaford MF (2002) A biohistory of health and behavior in the Georgia Bight: the agricultural transition and the impact of European contact. In: Steckel RS, Rose JC (eds) The backbone of history: health and nutrition in the western hemisphere. Cambridge University Press, Cambridge, pp 406–439

    Chapter  Google Scholar 

  • Lieberman DE, Pearson OM, Polk JD, Demes B, Crompton AW (2003) Optimization of bone growth and remodeling in response to loading in tapered mammalian limbs. J Exp Biol 206:3125–3138

    Article  PubMed  Google Scholar 

  • Lieberman DE, Polk JD, Demes B (2004) Prediction long bone loading from cross-sectional geometry. Am J Phys Anthropol 123:156–171

    Article  PubMed  Google Scholar 

  • Lovejoy CO, Trinkaus E (1980) Strength and robusticity of the Neandertal tibia. Am J Phys Anthropol 53:465–470

    Article  Google Scholar 

  • Lovejoy CO, Burstein AH, Heiple KG (1976) The biomechanical analysis of bone strength: a method and its application to platycnemia. Am J Phys Anthropol 44:489–505

    Article  CAS  PubMed  Google Scholar 

  • Marchi D, Shaw CN (2011) Variation in fibular robusticity reflects variation in mobility patterns. J Hum Evol 61:609–616

    Article  PubMed  Google Scholar 

  • Marchi D, Sparacello V, Shaw C (2011) Mobility and lower limb robusticity of a pastoralist Neolithic population from north-western Italy. In: Pinhasi R, Stock JT (eds) Human bioarchaeology of the transition to agriculture. Wiley-Blackwell, Chichester, West Sussex, pp 317–346

    Chapter  Google Scholar 

  • Martin R, Saller K (1956) Lehrbuch der Anthropologie. Gustav Fischer, Stuttgart

    Google Scholar 

  • Martin BD, Burr DB, Sharkey NA (1998) Skeletal tissue mechanics. Springer, New York

    Book  Google Scholar 

  • Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer, Berlin

    Book  Google Scholar 

  • Pearson OM (1997) Postcranial morphology and the origin of modern humans. Ph.D. thesis, Stony Brook University, Stony Brook

    Google Scholar 

  • Pearson OM (2000) Activity, climate, and postcranial robusticity: implications for modern human origins and scenarios of adaptive change. Curr Anthropol 41:569–607

    Article  CAS  PubMed  Google Scholar 

  • Pearson OM, Grine FE (1996) Cortical thickness and relative bending moments in human long bones: correlations among elements [abstract]. Am J Phys Anthropol Suppl 22:S183

    Google Scholar 

  • Pearson OM, Lieberman DE (2004) The aging of Wolff’s “Law:” ontogeny and responses to mechanical loading in cortical bone. Yearb Phys Anthropol 47:63–99

    Article  Google Scholar 

  • Pearson OM, Millones M (2005) Rasgos esqueléticos de adaptación al clima y a la actividad entre los habitantes aborígenes de Tierra del Fuego. An Inst Patagon Ser Cienc Hum 33:37–51

    Google Scholar 

  • Pearson OM, Cordero RM, Busby AM (2006) How different were Neanderthals’ habitual activities? A comparative analysis with diverse groups of recent humans. In: Harvati K, Harrison T (eds) Neandertals revisited: new approaches and perspectives. Springer, New York, pp 89–112

    Google Scholar 

  • Rantalainen T, Nikander R, Heinonen A, Suominen H, Sievänen H (2010) Direction-specific diaphyseal geometry and mineral mass distribution of tibia and fibula: a pQCT study of female athletes representing different exercise loading types. Calcif Tissue Int 86:447–454

    Article  CAS  PubMed  Google Scholar 

  • Ruff C (1987) Sexual dimorphism in human lower limb bone structure: relationship to subsistence strategy and sexual division of labor. J Hum Evol 16:391–416

    Article  Google Scholar 

  • Ruff CB (1991) Climate and body shape in hominid evolution. J Hum Evol 21:81–105

    Article  Google Scholar 

  • Ruff CB (1994a) Morphological adaptation to climate in modern and fossil hominids. Yearb Phys Anthropol 37:65–107

    Article  Google Scholar 

  • Ruff CB (1994b) Biomechanical analysis of northern and southern plains femora: behavioral implications. In: Owsley DW, Jantz RL (eds) Skeletal biology in the Great Plains: migration, warfare, health, and subsistence. Smithsonian Institution Press, Washington, pp 235–245

    Google Scholar 

  • Ruff CB (1995) Biomechanics of the hip and birth in early Homo. Am J Phys Anthropol 98:527–574

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB (1999) Skeletal structure and behavioral patterns of prehistoric Great Basin populations. In: Hemphill BE, Larsen CS (eds) Prehistoric lifeways in the Great Basin wetlands: bioarchaeological reconstruction and interpretation. University of Utah Press, Salt Lake City, pp 290–320

    Google Scholar 

  • Ruff CB (2002) Long bone articular and diaphyseal structure in Old World monkeys and apes. I: locomotor effects. Am J Phys Anthropol 119:305–342

    Article  PubMed  Google Scholar 

  • Ruff CB (2008) Biomechanical analyses of archaeological human skeletons. In: Katzenberg MA, Saunders SR (eds) Biological anthropology of the human skeleton, 2nd edn. Wiley-Liss, New York, pp 183–206

    Chapter  Google Scholar 

  • Ruff C (2010) Structural analysis of postcranial skeletal remains. In: Morgan M (ed) Pecos Pueblo revisited: the biological and social context (Papers of the Peabody Museum of Peabody Museum of Archaeology and Ethnology, Harvard University), vol 85. Peabody Museum of Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, MA, pp 93–108

    Google Scholar 

  • Ruff CB, Hayes WC (1983) Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation: I. Method and general patterns of variation. Am J Phys Anthropol 60:359–381

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB, Larsen CS, Hayes WC (1984) Structural changes with the transition to agriculture on the Georgia Coast. Am J Phys Anthropol 64:125–136

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB, Holt BM, Sladek V, Berner M, Murphy WA Jr, zur Nedden D, Seidler H, Recheis W (2006) Body size, body proportions, and mobility in the Tyrolean “Iceman”. J Hum Evol 51:91–101

    Article  PubMed  Google Scholar 

  • Shackleford LL (2007) Regional variation in the postcranial robusticity of Late Upper Paleolithic humans. Am J Phys Anthropol 133:655–668

    Article  Google Scholar 

  • Shang H, Tong H, Zhang S, Chen F, Trinkaus E (2007) An early modern human from Tianyuan Cave, Zhoukoudian, China. Proc Natl Acad Sci 104:6573–6578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw CN, Stock JT (2009a) Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology of athletes. Am J Phys Anthropol 140:149–159

    Article  PubMed  Google Scholar 

  • Shaw CN, Stock JT (2009b) Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes. Am J Phys Anthropol 140:160–172

    Article  PubMed  Google Scholar 

  • Shaw CN, Stock JT (2011) The influence of body proportions on femoral and tibial midshaft shape in hunter-gatherers. Am J Phys Anthropol 144:22–29

    Article  PubMed  Google Scholar 

  • Shaw CN, Hofmann CL, Petraglia MD, Stock JT, Gottschall JS (2012) Neandertal humeri may reflect adaptation to scraping tasks, but not spear thrusting. PLoS One 7:e40349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sparacello VS (2013) The bioarchaeology of changes in social stratification, warfare, and habitual activities in the Iron Age Samnites of Central Italy. Ph.D. thesis, University of New Mexico, Albuquerque

    Google Scholar 

  • Sparacello V, Marchi D (2008) Mobility and subsistence economy: a diachronic comparison between two groups settled in the same geographical area (Liguria, Italy). Am J Phys Anthropol 136:485–495

    Article  PubMed  Google Scholar 

  • Sparacello VS, Pearson OM (2010) The importance of accounting for the area of the medullary cavity in cross-sectional geometry: a test based on the femoral midshaft. Am J Phys Anthropol 143:612–624

    Article  CAS  PubMed  Google Scholar 

  • Sparacello VS, Pearson OM, Cowgill L (2010) Growing up in the Gravettian: ontogeny of cross-sectional geometry in the lower limb [abstract]. Am J Phys Anthropol Suppl 50:S221

    Google Scholar 

  • Stock JT (2006) Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy. Am J Phys Anthropol 131:194–204

    Article  CAS  PubMed  Google Scholar 

  • Stock J, Pfeiffer S (2001) Linking structural variability in long bone diaphyses to habitual behaviors: foragers from the southern African Later Stone Age and the Andaman Islands. Am J Phys Anthropol 115:337–348

    Article  CAS  PubMed  Google Scholar 

  • Stock JT, Pfeiffer SK (2004) Long bone robusticity and subsistence behaviour among Later Stone Age foragers of the forest and fynbos biomes of South Africa. J Archaeol Sci 31:999–1013

    Article  Google Scholar 

  • Trinkaus E (2009) The human tibia from Broken Hill, Kabwe, Zambia. PaleoAnthropology 2009:145–165

    Google Scholar 

  • Trinkaus E (2011) The postcranial dimensions of the La Chapelle-aux-Saints 1 Neandertal. Am J Phys Anthropol 145:461–468

    Article  PubMed  Google Scholar 

  • Trinkaus E, Ruff CB (1999a) Diaphyseal cross-sectional geometry of Near Eastern Middle Paleolithic humans: the femur. J Archaeol Sci 26:409–424

    Article  Google Scholar 

  • Trinkaus E, Ruff CB (1999b) Diaphyseal cross-sectional geometry of Near Eastern Middle Palaeolithic humans: the tibia. J Archaeol Sci 26:1289–1300

    Article  Google Scholar 

  • Trinkaus E, Ruff CB (2012) Femoral and tibial diaphyseal cross-sectional geometry in Pleistocene Homo. PaleoAnthropology 2012:13–62

    Google Scholar 

  • Wall-Scheffler C (2014) The balance between burden carrying, variable terrain and thermoregulatory pressures in assessing morphological variation. In: Carlson KJ, Marchi D (eds) Reconstructing mobility: environmental, behavioral, and morphological determinants. Springer, New York

    Google Scholar 

  • Wehner T, Lutz C, Ulrich S (2009) Internal loads in the human tibia during gait. Clin Biomech 24:299–302

    Article  Google Scholar 

  • Wescott DJ (2014) The relationship between femur shape and terrestrial mobility patterns. In: Carlson KJ, Marchi D (eds) Reconstructing mobility: environmental, behavioral, and morphological determinants. Springer, New York

    Google Scholar 

Download references

Acknowledgments

Data collection by OMP was supported by an NSF predoctoral fellowship, the Wenner-Gren Foundation, Boise Fund, the University of New Mexico; FEG and OMP’s collection of the cross-sectional data was supported by NSF DBS-9120117 to FEG. We are grateful to all of these institutions and to the many curators who facilitated access to their collections. We are grateful for a series of insightful criticisms by two anonymous reviewers and D. Marchi. Their critiques helped to improve this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osbjorn M. Pearson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pearson, O.M., Petersen, T.R., Sparacello, V.S., Daneshvari, S.R., Grine, F.E. (2014). Activity, “Body Shape,” and Cross-Sectional Geometry of the Femur and Tibia. In: Carlson, K., Marchi, D. (eds) Reconstructing Mobility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7460-0_8

Download citation

Publish with us

Policies and ethics