Skip to main content

Femoral Mechanics, Mobility, and Finite Element Analysis

  • Chapter
  • First Online:

Abstract

Traditional analyses of long bone morphology, e.g., applying beam theory to imaged cross sections of bone or investigating diaphyseal curvature, examine the effect of skeletal variables on structural integrity separately, an approach that does not incorporate information on the entire bone. Finite element analysis allows exploration of the structural integrity of complete bones under specific loading conditions, providing a more detailed picture of precisely how morphological differences affect a bone’s strength and patterns of stress and strain. Finite element analysis also allows complex variables such as differences in joint configurations between species to be modeled. Finite element models further allow the examination of how bones behave during simulations of particular activities, at various magnitudes of loading, and at different angles of excursion. Here I provide an overview of finite element analysis and examine how it contributes to studies of mobility using a case study of a human femur.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bertram JEA, Biewener AA (1988) Bone curvature: sacrificing strength for load predictability. J Theor Biol 131:75–92

    Article  CAS  PubMed  Google Scholar 

  • Biewener AA, Thomason J, Goodship AE, Lanyon LE (1983) Bone stress in the horse forelimb during locomotion at different gaits: a comparison of two experimental methods. J Biomech 16:565–576

    Article  CAS  PubMed  Google Scholar 

  • Bozanich J, Byron CD, Chalk J, Grosse IR, Lucas PW, Richmond BG, Ross CF, Slice DE, Smith AL, Spencer MA, et al. Density and material orientation in ape mandibular cortical bone; 2009 April 1–4, Miami.

    Google Scholar 

  • Carlson KJ (2014) Linearity in the real world—an experimental assessment of non-linearity in terrestrial locomotion. In: Carlson KJ, Marchi D (eds) Reconstructing mobility: environmental, behavioral, and morphological determinants. Springer, New York

    Chapter  Google Scholar 

  • Carlson KJ, Grine FE, Pearson OM (2007) Robusticity and sexual dimorphism in the postcranium of modern hunter-gatherers from Australia. Am J Phys Anthropol 134:9–23

    Article  PubMed  Google Scholar 

  • Carlson KJ, Judex S (2007) Increased non-linear locomotion alters diaphyseal bone shape. J Exp Biol 210:3117–3125

    Article  PubMed  Google Scholar 

  • Cowgill LW (2010) The ontogeny of Holocene and Late Pleistocene human postcranial strength. Am J Phys Anthropol 141:16–37

    PubMed  Google Scholar 

  • Cowgill LW (2014) Femoral diaphyseal shape and mobility: an ontogenetic perspective. In: Carlson KJ, Marchi D (eds) Reconstructing mobility: environmental, behavioral, and morphological determinants. Springer, New York

    Google Scholar 

  • Cowgill LW, Warrener A, Pontzer H, Ocobock C (2010) Waddling and toddling: the biomechanical effects of an immature gait. Am J Phys Anthropol 143:52–61

    Article  PubMed  Google Scholar 

  • Currey J (2002) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  • Currey JD, Butler G (1975) The mechanical properties of bone tissue in children. J Bone Joint Surg 57-A:810–814

    Google Scholar 

  • Daley MA, Biewener AA (2006) Running over rough terrain reveals limb control for intrinsic stability. Proc Natl Acad Sci U S A 103(2):15681–15686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daley MA, Usherwood JR (2010) Two explanations for the compliant running paradox: reduced work of bouncing viscera and increased stability in uneven terrain. Biol Lett 6:418–421

    Article  PubMed Central  PubMed  Google Scholar 

  • Demes B, Carlson KJ, Franz TM (2006) Cutting corners: the dynamics of turning behaviors in two primate species. J Exp Biol 209:927–937

    Article  PubMed  Google Scholar 

  • Demes B, Jungers WL, Gross TS, Fleagle JG (1995) Kinetics of leaping primates: influence of substrate orientation and compliance. Am J Phys Anthropol 96(4):419–429

    Article  CAS  PubMed  Google Scholar 

  • Demes B, Qin Y-X, Stern JT Jr, Larson SG, Rubin CT (2001) Patterns of strain in the macaque tibia during functional activity. Am J Phys Anthropol 116(4):257–265

    Article  CAS  PubMed  Google Scholar 

  • Dumont E, Grosse I, Slater G (2009) Requirements for comparing the performance of finite element models of biological structures. J Theor Biol 256:96–103

    Article  CAS  PubMed  Google Scholar 

  • Goodship AE, Lanyon LE, MacFie H (1979) Functional adaptation of bone to increased stress. J Bone Joint Surg 61-A:539–546

    Google Scholar 

  • Grosse IR, Dumont ER, Coletta C, Tolleson A (2007) Techniques for modeling muscle-induced forces in finite element models of skeletal structures. Anat Rec 290(9):1069–1088

    Article  Google Scholar 

  • Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng 124:273–280

    Article  Google Scholar 

  • Hert J, Liskova M, Landa J (1971) Reaction of bone to mechanical stimuli. Part I. Continuous and intermittent loading of tibia in rabbit. Folia Morphol 19:290–300

    CAS  Google Scholar 

  • Hert J, Liskova M, Landgrot B (1969) Influence of the long-term continuous bending on the bone. An experimental study on the tibia of the rabbit. Folia Morphol 17:389–399

    CAS  Google Scholar 

  • Hert J, Pribylova E, Liskova M (1972) Reaction of bone to mechanical stimuli. Part 3. Microstructure of compact bone of rabbit tibia after intermittent loading. Acta Anat 82:218–230

    Article  CAS  PubMed  Google Scholar 

  • Huiskes R (1982) On the modelling of long bones in structural analyses. J Biomech 15(1):65–69

    Article  CAS  PubMed  Google Scholar 

  • Jones HH, Priest JD, Hayes WC, Tichenor CC, Nagel DA (1977) Humeral hypertrophy in response to exercise. J Bone Joint Surg 59A:204–208

    Google Scholar 

  • Kaneko TS, Bell JS, Pejcic MR, Tehranzadeh J, Keyak JH (2004) Mechanical properties, density, and quantitative CT scan data of trabecular bone with and without metastases. J Biomech 37:523–530

    Article  PubMed  Google Scholar 

  • Kelly RL (1995) The foraging spectrum-diversity in hunter-gatherer lifeways. Smithsonian Institution Press, Washington

    Google Scholar 

  • Keyak JH, Rossi SA (2000) Prediction of femoral fracture load using finite element models: An examination of stress- and strain-based failure models. J Biomech 33:209–214

    Article  CAS  PubMed  Google Scholar 

  • Krolner B, Toft B (1963) Vertebral bone loss, an unheeded side effect of therapeutic bed rest. Clin Sci 64:537–540

    Google Scholar 

  • Lanyon LE (1987) Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodelling. J Biomech 20(11/12):1083–1093

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE, Baggott DG (1976) Mechanical function as an influence on the structure and form of bone. J Bone Joint Surg 58-B(4):436–443

    CAS  Google Scholar 

  • Lanyon LE, Bourn S (1979) The influence of mechanical function on the development and remodeling of the tibia: an experimental study in sheep. J Bone Joint Surg 61:263–273

    CAS  PubMed  Google Scholar 

  • Lanyon LE, Goodship AE, Pye CJ, MacFie H (1982) Mechanically adaptive bone remodeling. J Biomech 15:141–154

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE, Magee PT, Baggot DG (1979) The relationship of functional stress and strain to the processes of bone remodeling. An experimental study on the sheep radius. J Biomech 12:593–600

    Article  CAS  PubMed  Google Scholar 

  • Larsen CS (1987) Bioarchaeological interpretations of subsistence economy and behavior from human skeletal remains. Adv Archaeol Method Theory 10:339–445

    Google Scholar 

  • Lieberman DE, Pearson OM, Polk JD, Demes B, Crompton AW (2003) Optimization of bone growth and remodeling in response to loading in tapered mammalian limbs. J Exp Biol 206:3125–3138

    Article  PubMed  Google Scholar 

  • Lieberman DE, Polk JD, Demes B (2004) Predicting long bone loading from cross-sectional geometry. Am J Phys Anthropol 123:156–171

    Article  PubMed  Google Scholar 

  • Marchi D, Sparacello VS, Holt BM, Formicola V (2006) Biomechanical approach to the reconstruction of activity patterns in Neolithic Western Liguria, Italy. Am J Phys Anthropol 131:447–455

    Article  PubMed  Google Scholar 

  • Nordstrom P, Thorsen K, Bergstrom E, Lorentzon R (1996) High bone mass and altered relationships between bone mass, muscle strength, and body constitution in adolescent boys on a high-level of physical-activity. Bone 19:189–195

    Article  CAS  PubMed  Google Scholar 

  • Paul JP (1971) Load actions on the human femur in walking and some resultant stresses. Exp Mech 11:121–125

    Article  Google Scholar 

  • Pedersen DR, Brand RA, Davy DT (1997) Pelvic muscle and acetabular contact forces during gait. J Biomech 30(9):959–965

    Article  CAS  PubMed  Google Scholar 

  • Richmond BG, Wright BW, Grosse I, Dechow PC, Ross CF, Spencer MA, Strait DS (2005) Finite element analysis in functional morphology. Anat Rec A Discov Mol Cell Evol Biol 283A:259–274

    Article  Google Scholar 

  • Ruff C (1995) Biomechanics of the hip and birth in early Homo. Am J Phys Anthropol 98:527–574

    Article  CAS  PubMed  Google Scholar 

  • Ruff C (2005) Mechanical Determinants of Bone Form: Insights from Skeletal Remains. Muculoskelet Neutonal Interact 5(3):202–212

    CAS  Google Scholar 

  • Ruff C, Holt B, Trinkaus E (2006) Who’s afraid of the big bad Wolff?: “Wolff’s Law” and bone functional adaptation. Am J Phys Anthropol 129:484–498

    Article  PubMed  Google Scholar 

  • Ruff CB (1989) New approaches to structural evolution of limb bones in primates. Folia Primatol 53:142–159

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB, Trinkaus E, Walker A, Larsen CS (1993) Postcranial robusticity in Homo. I: Temporal trends and mechanical interpretation. Am J Phys Anthropol 91:21–53

    Article  CAS  PubMed  Google Scholar 

  • Shackelford LL, Trinkaus E (2002) Late Pleistocene human femoral diaphyseal curvature. Am J Phys Anthropol 118:359–370

    Article  PubMed  Google Scholar 

  • Skerry TM (2000) Biomechanical influences on skeletal growth and development. In: O’Higgins P, Cohn MJ (eds) Development growth and evolution: implications for the study of the hominid skeleton. Academic, San Diego, pp 29–39

    Google Scholar 

  • Sparacello V, Marchi D (2008) Mobility and subsistence economy: a diachronic comparison between two groups settled in the same geographical area (Liguria, Italy). Am J Phys Anthropol 136:485–495

    Article  PubMed  Google Scholar 

  • Sparacello V, Marchi D, Shaw C (2014) The importance of considering fibular robusticity when inferring the mobility patterns of past populations. In: Carlson KJ, Marchi D (eds) Reconstructing mobility: environmental, behavioral, and morphological determinants. Springer, New York

    Google Scholar 

  • Stock J (2006) Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy. Am J Phys Anthropol 131(2):194–204

    Article  CAS  PubMed  Google Scholar 

  • Stock J, Shaw C (2007) Which measures of diaphyseal robusticity are robust? A comparison of external methods of quantifying the strength of long bone diaphyses to cross-sectional geometric properties. Am J Phys Anthropol 134:412–423

    Article  PubMed  Google Scholar 

  • Strait DS, Qang Q, Dechow PC, Ross CF, Richmond BG, Spencer MA, Patel BA (2005) Modeling elastic properties in finite-element analysis: How much precision is needed to produce an accurate model? Anat Rec A Discov Mol Cell Evol Biol 283A(2):275–287

    Article  Google Scholar 

  • Taylor ME, Tanner KE, Freeman MAR, Yettram AL (1996) Stress and strain distribution within the intact femur: compression or bending? Med Eng Phys 18:122–131

    Article  CAS  PubMed  Google Scholar 

  • Tilton FE, Degioanni TTC, Schneider VS (1980) Long term follow up on Skylab bone demineralisation. Aviat Space Environ Med 51:209–213

    Google Scholar 

  • Trinkaus E (1993) Femoral neck-shaft angles of the Qafzeh-Skhul early modern humans, and activity levels among immature Near Eastern Middle Paleolithic hominids. J Hum Evol 25:393–416

    Article  Google Scholar 

  • Trinkaus E, Ruff CB (1999) Diaphyseal cross-sectional geometry of Near Eastern Middle Palaeolithic humans: the femur. J Archaeol Sci 26:409–424

    Article  Google Scholar 

  • Trinkaus E, Ruff CB, Conroy GC (1999) The anomalous archaic Homo femur from Berg Aukas, Namibia: A biomechanical assessment. Am J Phys Anthropol 110:379–391

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Strait DS, Dechow PC (2006) A comparison of cortical elastic properties in the craniofacial skeletons of three primate species and its relevance to the study of human evolution. J Hum Evol 51(4):375–382

    Article  PubMed  Google Scholar 

  • Weber GW, Bookstein FL (2011) Virtual anthropology: a guide to a new interdisciplinary field. Springer, New York

    Book  Google Scholar 

  • Weber GW, Bookstein FL, Strait DS (2011) Virtual anthropology meets biomechanics. J Biomech 44(8):1429–1432

    Article  PubMed  Google Scholar 

  • Woo SL-Y (1981) The relationships of changes in stress levels on long bone remodeling, vol 45. American Society of Mechanical Engineers, Applied Mechanics Division, AMD, New York, pp 107–129

    Google Scholar 

  • Zienkiewicz O, Taylor R, Zhu J (2005) The finite element method: its basis and fundaments. Elsevier, Oxford

    Google Scholar 

Download references

Acknowledgements

This study was supported by NSF BCS 1060835 and NSF BCS 0725126. I am especially grateful to Dr. David Strait for his helpful reviews and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelli H. Tamvada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tamvada, K.H. (2014). Femoral Mechanics, Mobility, and Finite Element Analysis. In: Carlson, K., Marchi, D. (eds) Reconstructing Mobility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7460-0_15

Download citation

Publish with us

Policies and ethics