Skip to main content

Human Immunodeficiency Viruses Types 1 and 2

  • Chapter
  • First Online:
Book cover Viral Infections of Humans

Abstract

Human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2) are retroviruses that attack and destroy cells essential to the regulation of immune function, primarily the CD4-bearing lymphocytes. Of the two viruses, HIV-1 accounts for the vast majority of infection, morbidity and mortality in the world. Some newly infected individuals experience a mononucleosis-like syndrome, and all undergo a deterioration of cell-mediated immunity. Although the rate of loss is highly variable, in the absence of treatment the loss is eventually profound enough to produce a fatal acquired immunodeficiency syndrome (AIDS) consisting of a spectrum of opportunistic infections and neoplasms. Since the emergence of AIDS in 1981, HIV-1 has spread by sexual, parenteral, and perinatal routes to reach pandemic proportions. Some 35 million people worldwide are currently infected with HIV-1, but the affected populations vary greatly by geographic, socioeconomic and behavioral factors. Men who have sex with men were initially and still are at high risk, but the infection has had huge numerical impact on heterosexuals in sub-Saharan Africa and Asia and on injection drug users in Eastern Europe, Southeast Asia and urban areas elsewhere. Numerous alternative therapeutic antiretroviral agents combined in increasingly simpler and less toxic regimens have proved capable of suppressing viremia to undetectable levels and often essentially halting the disease process. However, HIV-1 mutates easily and establishes seemingly permanent reservoirs from which the virus has proved difficult to dislodge entirely with even the most aggressive therapy. Nevertheless, international organizations have accepted the challenge of mobilizing to deliver those agents in concerted intervention programs tailored to local epidemiologic and socioeconomic conditions. Primary prevention HIV-1 infection at the population level has depended heavily on implementation of programs for screening of blood supplies, behavioral risk reduction, male circumcision, and administration of vaginal microbicides or systemic suppression of ulcerative genital co-infections. Success has been mixed and slow in coming. Vaccine development has been frustratingly slower. Discovery of a correlate of broadly protective immunity has eluded the most intense vaccinologic research, and trials of early prototype vaccines have been largely disappointing. A more promising preventive strategy has been a byproduct of widespread therapeutic intervention: treat infected individuals to prevent transmission to their uninfected partners, i.e., treatment as prevention. Whether expansive application of this strategy will prove to be the turning point in the battle against HIV/AIDS remains to be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharp PM, Hahn BH. The evolution of HIV-1 and the origin of AIDS. Philos Trans R Soc Lond B Biol Sci. 2010;365:2487–94.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1:a006841.

    PubMed  PubMed Central  Google Scholar 

  3. Melbye M, Goedert JJ, Blattner W. The natural history of HTLV-III/LAV infection. In: Gottleib M, Jeffries D, Mildvan D, Pinching A, Quinn TC, Weiss R, editors. Current topics in AIDS. London: Wiley; 1987. p. 57–93.

    Google Scholar 

  4. Centers for Disease Control. Pneumocystis pneumonia – Los Angeles. MMWR Morb Mortal Wkly Rep. 1981;30:250–2.

    Google Scholar 

  5. Rous P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med. 1911;13:397.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A. 1980;77:7415–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Gallo R, Wong-Staal F, Montagnier L, Haseltine WA, Yoshida M. HIV/HTLV gene nomenclature. Nature. 1988;333:504.

    PubMed  CAS  Google Scholar 

  8. Gallo RC, Salahuddin SZ, Popovic M, et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 1984;224:500–3.

    PubMed  CAS  Google Scholar 

  9. Ratner L, Gallo RC, Wong-Staal F. HTLV-III, LAV, ARV are variants of same AIDS virus. Nature. 1985;313:636–7.

    PubMed  CAS  Google Scholar 

  10. Quagliarello V. The Acquired Immunodeficiency Syndrome: current status. Yale J Biol Med. 1982;55:443–52.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Goedert JJ, Biggar RJ, Weiss SH, et al. Three-year incidence of AIDS in five cohorts of HTLV-III-infected risk group members. Science. 1986;231:992–5.

    PubMed  CAS  Google Scholar 

  12. Goedert JJ, Kessler CM, Aledort LM, et al. A prospective study of human immunodeficiency virus type 1 infection and the development of AIDS in subjects with hemophilia. N Engl J Med. 1989;321:1141–8.

    PubMed  CAS  Google Scholar 

  13. Goedert JJ, Eyster ME, Biggar RJ, Blattner WA. Heterosexual transmission of human immunodeficiency virus: association with severe depletion of T-helper lymphocytes in men with hemophilia. AIDS Res Hum Retroviruses. 1987;3:355–61.

    PubMed  CAS  Google Scholar 

  14. Moss AR, Bacchetti P, Osmond D, et al. Seropositivity for HIV and the development of AIDS or AIDS related condition: three year follow up of the San Francisco General Hospital cohort. Br Med J (Clin Res Ed). 1988;296:745–50.

    CAS  Google Scholar 

  15. Polk BF, Fox R, Brookmeyer R, et al. Predictors of the acquired immunodeficiency syndrome developing in a cohort of seropositive homosexual men. N Engl J Med. 1987;316:61–6.

    PubMed  CAS  Google Scholar 

  16. Corbitt G, Bailey AS, Williams G. HIV infection in Manchester, 1959. Lancet. 1990;336:51.

    PubMed  CAS  Google Scholar 

  17. Nahmias AJ, Weiss J, Yao X, et al. Evidence for human infection with an HTLV III/LAV-like virus in Central Africa, 1959. Lancet. 1986;1:1279–80.

    PubMed  CAS  Google Scholar 

  18. Vangroenweghe D. The earliest cases of human immunodeficiency virus type 1 group M in Congo-Kinshasa, Rwanda and Burundi and the origin of acquired immune deficiency syndrome. Philos Trans R Soc Lond B Biol Sci. 2001;356:923–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Barin F, M’Boup S, Denis F, et al. Serological evidence for virus related to simian T-lymphotropic retrovirus III in residents of West Africa. Lancet. 1985;2:1387–9.

    PubMed  CAS  Google Scholar 

  20. Clavel F, Guetard D, Brun-Vezinet F, et al. Isolation of a new human retrovirus from West African patients with AIDS. Science. 1986;233:343–6.

    PubMed  CAS  Google Scholar 

  21. Biberfeld G, Bottiger B, Bredberg-Raden U, et al. Findings in four HTLV-IV seropositive women from West Africa. Lancet. 1986;2:1330–1.

    PubMed  CAS  Google Scholar 

  22. Bryceson A, Tomkins A, Ridley D, et al. HIV-2-associated AIDS in the 1970s. Lancet. 1988;2:221.

    PubMed  CAS  Google Scholar 

  23. Smith TF, Srinivasan A, Schochetman G, Marcus M, Myers G. The phylogenetic history of immunodeficiency viruses. Nature. 1988;333:573–5.

    PubMed  CAS  Google Scholar 

  24. Fultz PN, Siegel RL, Brodie A, et al. Prolonged CD4+ lymphocytopenia and thrombocytopenia in a chimpanzee persistently infected with human immunodeficiency virus type 1. J Infect Dis. 1991;163:441–7.

    PubMed  CAS  Google Scholar 

  25. Khabbaz RF, Rowe T, Murphey-Corb M, et al. Simian immunodeficiency virus needlestick accident in a laboratory worker. Lancet. 1992;340:271–3.

    PubMed  CAS  Google Scholar 

  26. Poulsen AG, Aaby P, Soares da Gama M, Dias F. HIV-2 in people over 50 years in Bissau, prevalence and risk factors. In: Seventh international conference on AIDS, Amsterdam. 19–24 July 1992; 1992.

    Google Scholar 

  27. Doolittle RF. Immunodeficiency viruses: the simian-human connection. Nature. 1989;339:338–9.

    PubMed  CAS  Google Scholar 

  28. Pandrea I, Silvestri G, Apetrei C. AIDS in african nonhuman primate hosts of SIVs: a new paradigm of SIV infection. Curr HIV Res. 2009;7:57–72.

    PubMed  CAS  Google Scholar 

  29. Myers G, MacInnes K, Korber B. The emergence of simian/human immunodeficiency viruses. AIDS Res Hum Retroviruses. 1992;8:373–86.

    PubMed  CAS  Google Scholar 

  30. Gao F, Bailes E, Robertson DL, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397:436–41.

    PubMed  CAS  Google Scholar 

  31. Centers for Disease Control. 1993 Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. Morb Mortal Wkly Rep. 1992;41:1–19.

    Google Scholar 

  32. Connor EM, Sperling RS, Gelber R, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med. 1994;331:1173–80.

    PubMed  CAS  Google Scholar 

  33. McGregor A. Renewed UN, drive against AIDS. Lancet. 1994;344:1693–4.

    PubMed  CAS  Google Scholar 

  34. Mann J, Tarantola D. AIDS in the world II. New York/Oxford: Oxford University Press; 1996.

    Google Scholar 

  35. Guay LA, Musoke P, Fleming T, et al. Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. Lancet. 1999;354:795–802.

    PubMed  CAS  Google Scholar 

  36. Coovadia HM, Brown ER, Fowler MG, et al. Efficacy and safety of an extended nevirapine regimen in infant children of breastfeeding mothers with HIV-1 infection for prevention of postnatal HIV-1 transmission (HPTN 046): a randomised, double-blind, placebo-controlled trial. Lancet. 2012;379:221–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Mellors JW, Rinaldo Jr CR, Gupta P, White RM, Todd JA, Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996;272:1167–70.

    PubMed  CAS  Google Scholar 

  38. HIV and AIDS History. http://www.avert.org/hiv-aids-history.htm. Accessed 30 July 2013.

  39. Celum C, Wald A, Hughes J, et al. Effect of aciclovir on HIV-1 acquisition in herpes simplex virus 2 seropositive women and men who have sex with men: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;371:2109–19.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Karim QA, Baxter C. Microbicides for the prevention of sexually transmitted HIV infection. Expert Rev Anti Infect Ther. 2013;11:13–23.

    PubMed  Google Scholar 

  41. Stoneburner RL, Low-Beer D. Population-level HIV declines and behavioral risk avoidance in Uganda. Science. 2004;304:714–8.

    PubMed  CAS  Google Scholar 

  42. Joint United Nations Programme on HIV/AIDS (UNAIDS). World AIDS day report. Geneva; 2012.

    Google Scholar 

  43. Brown P. Kofi Annan describes new health fund for developing countries. BMJ. 2001;322:1265.

    PubMed  CAS  PubMed Central  Google Scholar 

  44. New Funding Model. 2013. http://www.theglobalfund.org/en/activities/fundingmodel/. Accessed 10 Aug 2013.

  45. Brookmeyer R. Reconstruction and future trends of the AIDS epidemic in the United States. Science. 1991;253:37–42.

    PubMed  CAS  Google Scholar 

  46. Buehler JW, Devine OJ, Berkelman RL, Chevarley FM. Impact of the human immunodeficiency virus epidemic on mortality trends in young men, United States. Am J Public Health. 1990;80:1080–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Trepka MJ, Maddox LM, Lieb S, Niyonsenga T. Utility of the National Death Index in ascertaining mortality in acquired immunodeficiency syndrome surveillance. Am J Epidemiol. 2011;174:90–8.

    PubMed  PubMed Central  Google Scholar 

  48. Centers for Disease Control and Prevention. HIV/AIDS surveillance report. Cases of HIV infection and AIDS in the United States and dependent areas, 2005–2007; June 2007.

    Google Scholar 

  49. Quinn TC. HIV epidemiology and the effects of antiviral therapy on long-term consequences. AIDS. 2008;22 Suppl 3:S7–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. van Tienen C. Schim van der Loeff M, Peterson I, et al. HTLV-1 and HIV-2 infection are associated with increased mortality in a rural West African community. PloS One. 2011;6:e29026.

    PubMed  PubMed Central  Google Scholar 

  51. World Health Organization. Acquired immunodeficiency syndrome (AIDS): WHO/CDC case definition for AIDS. WHO Wekly Epidemiol Rec. 1986;61:69–72.

    Google Scholar 

  52. Centers for Disease Control. Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. Morbid Mortal Week Rep. 1987;36:3S–15.

    Google Scholar 

  53. Council of State and Territorial Epidemlologists. Laboratory reporting of clinical test results indicative of HIV infection: new standards for a new era of surveillance and prevention [Position Statement 04-ID-07]. 2004. http://www.cste.org/ps/2004pdf/04-Id-07-final.pdf.

  54. Schneider E, Whitmore S, Glynn KM, Dominguez K, Mitsch A, McKenna MT. Revised surveillance case definitions for HIV infection among adults, adolescents, and children aged <18 months and for HIV infection and AIDS among children aged 18 months to <13 years–United States, 2008. MMWR Recomm Rep. 2008;57:1–12.

    PubMed  Google Scholar 

  55. Centers for Disease Control and Prevention. Update: impact of the expanded AIDS surveillance case definition for adolescents and adults on case reporting – United States, 1993. Morb Mortal Wkly Rep. 1994;43:160–1, 7–70.

    Google Scholar 

  56. Joint United Nations Programme on HIV/AIDS (UNAIDS). Global report: UNAIDS report on the global AIDS epidemic, Geneva; 2012.

    Google Scholar 

  57. Ghys PDG, Garneet GP. The 2009 HIV and AIDS estimates and projections: methods, tools and analyses. Sex Transm Infect. 2010;86 Suppl 2:ii1–2.

    PubMed Central  Google Scholar 

  58. Stanecki K, Garnett GP, Ghys PD. Developments in the field of HIV estimates: methods, parameters and trends. Sex Transm Infect. 2012;88 Suppl 2:i1–2.

    PubMed  PubMed Central  Google Scholar 

  59. Bao L, Salomon JA, Brown T, Raftery AE, Hogan DR. Modelling national HIV/AIDS epidemics: revised approach in the UNAIDS Estimation and Projection Package 2011. Sex Transm Infect. 2012;88 Suppl 2:i3–10.

    PubMed  PubMed Central  Google Scholar 

  60. Joint United Nations Programme on HIV/AIDS (UNAIDS). Global AIDS response progress reporting 2013, Geneva; 2013.

    Google Scholar 

  61. Marlink R, Kanki P, Thior I, et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science. 1994;265:1587–90.

    PubMed  CAS  Google Scholar 

  62. van der Loeff MF, Larke N, Kaye S, et al. Undetectable plasma viral load predicts normal survival in HIV-2-infected people in a West African village. Retrovirology. 2010;7:46.

    PubMed  PubMed Central  Google Scholar 

  63. Weiss SH, Goedert JJ, Sarngadharan MG, Bodner AJ, Gallo RC, Blattner WA. Screening test for HTLV-III (AIDS agent) antibodies. Specificity, sensitivity, and applications. JAMA. 1985;253:221–5.

    PubMed  CAS  Google Scholar 

  64. Busch MP, el Amad Z, McHugh TM, Chien D, Polito AJ. Reliable confirmation and quantitation of human immunodeficiency virus type 1 antibody using a recombinant-antigen immunoblot assay. Transfusion. 1991;31:129–37.

    PubMed  CAS  Google Scholar 

  65. Bayer R, Oppenheimer GM. Routine HIV testing, public health, and the USPSTF – an end to the debate. N Engl J Med. 2013;368:881–4.

    PubMed  CAS  Google Scholar 

  66. Department of Veterans Affairs. VHA Directive 2009-036. Testing for human immunodeficiency virus in Veterans Health Administration facilities. In; 2009; p. 1–6. http://www.va.gov/vhapublications/ViewPublication.asp?pub_ID=2056. Accessed 2014 April 25.

  67. Karon JM, Khare M, Rosenberg PS. The current status of methods for estimating the prevalence of human immunodeficiency virus in the United States of America. Stat Med. 1998;17:127–42.

    PubMed  CAS  Google Scholar 

  68. Zhou SY, Kingsley LA, Taylor JM, Chmiel JS, He DY, Hoover DR. A method to test for a recent increase in HIV-1 seroconversion incidence: results from the Multicenter AIDS Cohort Study (MACS). Stat Med. 1993;12:153–64.

    PubMed  CAS  Google Scholar 

  69. Miller E, Waight PA, Tedder RS, Sutherland S, Mortimer PP, Shafi MS. Incidence of HIV infection in homosexual men in London, 1988–94. BMJ. 1995;311:545.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Andes WA, Daul CB, deShazo RD, Palmer CH. Seroconversion to human immunodeficiency virus (HIV) in hemophiliacs. Relation to lymphadenopathy. Transfusion. 1988;28:98–102.

    PubMed  CAS  Google Scholar 

  71. Fricke W, Augustyniak L, Lawrence D, Brownstein A, Kramer A, Evatt B. Human immunodeficiency virus infection due to clotting factor concentrates: results of the Seroconversion Surveillance Project. Transfusion. 1992;32:707–9.

    PubMed  CAS  Google Scholar 

  72. Geis S, Maboko L, Saathoff E, et al. Risk factors for HIV-1 infection in a longitudinal, prospective cohort of adults from the Mbeya Region, Tanzania. J Acquir Immune Defic Syndr. 2011;56:453–9.

    PubMed  PubMed Central  Google Scholar 

  73. Kaplan EH, Brookmeyer R. Snapshot estimators of recent HIV incidence rates. Oper Res. 1999;47:29–37.

    Google Scholar 

  74. Janssen RS, Satten GA, Stramer SL, et al. New testing strategy to detect early HIV-1 infection for use in incidence estimates and for clinical and prevention purposes. JAMA. 1998;280:42–8.

    PubMed  CAS  Google Scholar 

  75. Parekh BS, Kennedy MS, Dobbs T, et al. Quantitative detection of increasing HIV type 1 antibodies after seroconversion: a simple assay for detecting recent HIV infection and estimating incidence. AIDS Res Hum Retroviruses. 2002;18:295–307.

    PubMed  CAS  Google Scholar 

  76. Hall HI, Song R, Rhodes P, et al. Estimation of HIV incidence in the United States. JAMA. 2008;300:520–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. McNicholl JM, McDougal JS, Wasinrapee P, et al. Assessment of BED HIV-1 incidence assay in seroconverter cohorts: effect of individuals with long-term infection and importance of stable incidence. PloS One. 2011;6:e14748.

    PubMed  PubMed Central  Google Scholar 

  78. Duong YT, Qiu M, De AK, et al. Detection of recent HIV-1 infection using a new limiting-antigen avidity assay: potential for HIV-1 incidence estimates and avidity maturation studies. PloS One. 2012;7:e33328.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Centers for Disease Control and Prevention. Consultation on advancing HIV incidence surveillance: summary at: http://www.cdc.gov/hiv/pdf/statistics_cahivis.pdf. Accessed 10 Apr 2014.

  80. Brookmeyer R, Konikoff J, Laeyendecker O, Eshleman SH. Estimation of HIV incidence using multiple biomarkers. Am J Epidemiol. 2013;177:264–72.http://www.cdc.gov/hiv/pdf/statistics_cahivis.pdf

  81. Laeyendecker O, Brookmeyer R, Cousins MM, et al. HIV incidence determination in the United States: a multiassay approach. J Infect Dis. 2013;207:232–9.

    PubMed  PubMed Central  Google Scholar 

  82. Kim AA, Hallett T, Stover J, et al. Estimating HIV incidence among adults in Kenya and Uganda: a systematic comparison of multiple methods. PloS One. 2011;6:e17535.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Eaton JW, Johnson LF, Salomon JA, et al. HIV treatment as prevention: systematic comparison of mathematical models of the potential impact of antiretroviral therapy on HIV incidence in South Africa. PLoS Med. 2012;9:e1001245.

    PubMed  PubMed Central  Google Scholar 

  84. Barre-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220:868–71.

    PubMed  CAS  Google Scholar 

  85. Goldsmith C, Feorino P, Palmer EL, McManus WR. Centers for Disease Control and Prevention. Public Health Image Library (PHIL), Image #10000; 1984. At: http://phil.cdc.gov/phil/details.asp. Accessed 2013 August 10.

  86. Popovic M, Sarngadharan MG, Read E, Gallo RC. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984;224:497–500.

    PubMed  CAS  Google Scholar 

  87. Eyster ME, Gail MH, Ballard JO, Al-Mondhiry H, Goedert JJ. Natural history of human immunodeficiency virus infections in hemophiliacs: effects of T-cell subsets, platelet counts, and age. Ann Intern Med. 1987;107:1–6.

    PubMed  CAS  Google Scholar 

  88. Kramer A, Goedert JJ, Wachter H, Fuchs D. Prognostic value of serum beta 2-microglobulin in HIV infection. Lancet. 1992;340:371.

    PubMed  CAS  Google Scholar 

  89. Kramer A, Biggar RJ, Hampl H, et al. Immunologic markers of progression to acquired immunodeficiency syndrome are time-dependent and illness-specific. Am J Epidemiol. 1992;136:71–80.

    PubMed  CAS  Google Scholar 

  90. Fuchs D, Kramer A, Reibnegger G, et al. Neopterin and beta 2-microglobulin as prognostic indices in human immunodeficiency virus type 1 infection. Infection. 1991;19 Suppl 2:S98–102.

    PubMed  Google Scholar 

  91. Acquired immunodeficiency syndrome (AIDS). Proposed WHO criteria for interpreting results from western blot assays for HIV-1, HIV-2, and HTLV-I/HTLV-II. Wkly Epidemiol Rec 1990;65:281–3.

    Google Scholar 

  92. Jackson JB, Sannerud KJ, Hopsicker JS, Kwok SY, Edson JR, Balfour Jr HH. Hemophiliacs with HIV antibody are actively infected. JAMA. 1988;260:2236–9.

    PubMed  CAS  Google Scholar 

  93. Berkeley JS, Fogiel PC, Kindley AD, Moffat MA. Peripartum HIV seroconversion: a cautionary tale. Lancet. 1992;340:58–9.

    PubMed  CAS  Google Scholar 

  94. Comeau AM, Hsu HW, Schwerzler M, et al. Identifying human immunodeficiency virus infection at birth: application of polymerase chain reaction to Guthrie cards. J Pediatr. 1993;123:252–8.

    PubMed  CAS  Google Scholar 

  95. Roy MJ, Damato JJ, Burke DS. Absence of true seroreversion of HIV-1 antibody in seroreactive individuals. JAMA. 1993;269:2876–9.

    PubMed  CAS  Google Scholar 

  96. Busch MP, Eble BE, Khayam-Bashi H, et al. Evaluation of screened blood donations for human immunodeficiency virus type 1 infection by culture and DNA amplification of pooled cells. N Engl J Med. 1991;325:1–5.

    PubMed  CAS  Google Scholar 

  97. Celum CL, Coombs RW, Jones M, et al. Risk factors for repeatedly reactive HIV-1 EIA and indeterminate western blots. A population-based case–control study. Arch Intern Med. 1994;154:1129–37.

    PubMed  CAS  Google Scholar 

  98. Kleinman S, Busch MP, Hall L, et al. False-positive HIV-1 test results in a low-risk screening setting of voluntary blood donation. Retrovirus Epidemiology Donor Study. JAMA. 1998;280:1080–5.

    PubMed  CAS  Google Scholar 

  99. Cordes RJ, Ryan ME. Pitfalls in HIV testing. Application and limitations of current tests. Postgrad Med. 1995;98:177–80, 85–6, 89.

    PubMed  CAS  Google Scholar 

  100. Mayer KH, Stoddard AM, McCusker J, Ayotte D, Ferriani R, Groopman JE. Human T-lymphotropic virus type III in high-risk, antibody-negative homosexual men. Ann Intern Med. 1986;104:194–6.

    PubMed  CAS  Google Scholar 

  101. Salahuddin SZ, Groopman JE, Markham PD, et al. HTLV-III in symptom-free seronegative persons. Lancet. 1984;2:1418–20.

    PubMed  CAS  Google Scholar 

  102. Polywka S, Feldner J, Duttmann H, Laufs R. Diagnostic evaluation of a new combined HIV p24 antigen and anti-HIV1/2/O screening assay. Clin Lab. 2001;47:351–6.

    PubMed  CAS  Google Scholar 

  103. Saville RD, Constantine NT, Cleghorn FR, et al. Fourth-generation enzyme-linked immunosorbent assay for the simultaneous detection of human immunodeficiency virus antigen and antibody. J Clin Microbiol. 2001;39:2518–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Henrard DR, Phillips JF, Muenz LR, et al. Natural history of HIV-1 cell-free viremia. JAMA. 1995;274:554–8.

    PubMed  CAS  Google Scholar 

  105. O’Brien TR, George JR, Epstein JS, Holmberg SD, Schochetman G. Testing for antibodies to human immunodeficiency virus type 2 in the United States. MMWR Recomm Rep. 1992;41:1–9.

    PubMed  Google Scholar 

  106. O’Brien TR, George JR, Holmberg SD. Human immunodeficiency virus type 2 infection in the United States. Epidemiology, diagnosis, and public health implications. JAMA. 1992;267:2775–9.

    PubMed  Google Scholar 

  107. Pieniazek D, Peralta JM, Ferreira JA, et al. Identification of mixed HIV-1/HIV-2 infections in Brazil by polymerase chain reaction. AIDS. 1991;5:1293–9.

    PubMed  CAS  Google Scholar 

  108. Centers for Disease Control. Notice to readers: protocols for confirmation of reactive rapid HIV tests; 2004. Morb Mortal Wkly Rep. 2004;53:221–2.

    Google Scholar 

  109. Khan AS, Heneine WM, Chapman LE, et al. Assessment of a retrovirus sequence and other possible risk factors for the chronic fatigue syndrome in adults. Ann Intern Med. 1993;118:241–5.

    PubMed  CAS  Google Scholar 

  110. Lynch CE, Madej R, Louie PH, Rodgers G. Detection of HIV-1 DNA by PCR: evaluation of primer pair concordance and sensitivity of a single primer pair. J Acquir Immune Defic Syndr. 1992;5:433–40.

    PubMed  CAS  Google Scholar 

  111. Holodniy M. Viral load monitoring in HIV infection. Curr Infect Dis Rep. 1999;1:497–503.

    PubMed  Google Scholar 

  112. Mellors JW, Munoz A, Giorgi JV, et al. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med. 1997;126:946–54.

    PubMed  CAS  Google Scholar 

  113. Fiebig EW, Wright DJ, Rawal BD, et al. Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS. 2003;17:1871–9.

    PubMed  Google Scholar 

  114. Lindback S, Thorstensson R, Karlsson AC, et al. Diagnosis of primary HIV-1 infection and duration of follow-up after HIV exposure. Karolinska Institute Primary HIV Infection Study Group. AIDS. 2000;14:2333–9.

    PubMed  CAS  Google Scholar 

  115. Piatak Jr M, Saag MS, Yang LC, et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science. 1993;259:1749–54.

    PubMed  CAS  Google Scholar 

  116. Steketee RW, Abrams EJ, Thea DM, et al. Early detection of perinatal human immunodeficiency virus (HIV) type 1 infection using HIV RNA amplification and detection. New York City Perinatal HIV Transmission Collaborative Study. J Infect Dis. 1997;175:707–11.

    PubMed  CAS  Google Scholar 

  117. Rouet F, Montcho C, Rouzioux C, et al. Early diagnosis of paediatric HIV-1 infection among African breast-fed children using a quantitative plasma HIV RNA assay. AIDS. 2001;15:1849–56.

    PubMed  CAS  Google Scholar 

  118. Young NL, Shaffer N, Chaowanachan T, et al. Early diagnosis of HIV-1-infected infants in Thailand using RNA and DNA PCR assays sensitive to non-B subtypes. J Acquir Immune Defic Syndr. 2000;24:401–7.

    PubMed  CAS  Google Scholar 

  119. Nesheim S, Palumbo P, Sullivan K, et al. Quantitative RNA testing for diagnosis of HIV-infected infants. J Acquir Immune Defic Syndr. 2003;32:192–5.

    PubMed  CAS  Google Scholar 

  120. Cunningham CK, Charbonneau TT, Song K, et al. Comparison of human immunodeficiency virus 1 DNA polymerase chain reaction and qualitative and quantitative RNA polymerase chain reaction in human immunodeficiency virus 1-exposed infants. Pediatr Infect Dis J. 1999;18:30–5.

    PubMed  CAS  Google Scholar 

  121. Shearer WT, Quinn TC, LaRussa P, et al. Viral load and disease progression in infants infected with human immunodeficiency virus type 1. Women and Infants Transmission Study Group. N Engl J Med. 1997;336:1337–42.

    PubMed  CAS  Google Scholar 

  122. Palumbo PE, Kwok S, Waters S, et al. Viral measurement by polymerase chain reaction-based assays in human immunodeficiency virus-infected infants. J Pediatr. 1995;126:592–5.

    PubMed  CAS  Google Scholar 

  123. Stramer SL, Caglioti S, Strong DM. NAT of the United States and Canadian blood supply. Transfusion. 2000;40:1165–8.

    PubMed  CAS  Google Scholar 

  124. Stramer SL, Glynn SA, Kleinman SH, et al. Detection of HIV-1 and HCV infections among antibody-negative blood donors by nucleic acid-amplification testing. N Engl J Med. 2004;351:760–8.

    PubMed  CAS  Google Scholar 

  125. Busch MP, Kleinman SH, Jackson B, Stramer SL, Hewlett I, Preston S. Committee report. Nucleic acid amplification testing of blood donors for transfusion-transmitted infectious diseases: Report of the Interorganizational Task Force on Nucleic Acid Amplification Testing of Blood Donors. Transfusion. 2000;40:143–59.

    PubMed  CAS  Google Scholar 

  126. Goedert JJ, Biggar RJ, Winn DM, et al. Decreased helper T lymphocytes in homosexual men. II. Sexual practices. Am J Epidemiol. 1985;121:637–44.

    PubMed  CAS  Google Scholar 

  127. Dawson JD, Lagakos SW. Analyzing laboratory marker changes in AIDS clinical trials. J Acquir Immune Defic Syndr. 1991;4:667–76.

    PubMed  CAS  Google Scholar 

  128. Hoover DR, Graham NM, Chen B, et al. Effect of CD4+ cell count measurement variability on staging HIV-1 infection. J Acquir Immune Defic Syndr. 1992;5:794–802.

    PubMed  CAS  Google Scholar 

  129. Fusaro RE, Nielsen JP, Scheike TH. Marker-dependent hazard estimation: an application to AIDS. Stat Med. 1993;12:843–65.

    PubMed  CAS  Google Scholar 

  130. Koziol DE, Saah AJ, Odaka N, Munoz A. A comparison of risk factors for human immunodeficiency virus and hepatitis B virus infections in homosexual men. Ann Epidemiol. 1993;3:434–41.

    PubMed  CAS  Google Scholar 

  131. Munoz A, Schrager LK, Bacellar H, et al. Trends in the incidence of outcomes defining acquired immunodeficiency syndrome (AIDS) in the Multicenter AIDS Cohort Study: 1985–1991. Am J Epidemiol. 1993;137:423–38.

    PubMed  CAS  Google Scholar 

  132. Zangerle R, Fuchs D, Reibnegger G, Fritsch P, Wachter H. Markers for disease progression in intravenous drug users infected with HIV-1. AIDS. 1991;5:985–91.

    PubMed  CAS  Google Scholar 

  133. Pirzada Y, Khuder S, Donabedian H. Predicting AIDS-related events using CD4 percentage or CD4 absolute counts. AIDS Res Ther. 2006;3:20.

    PubMed  PubMed Central  Google Scholar 

  134. Briggs NC, Natoli C, Tinari N, D’Egidio M, Goedert JJ, Iacobelli S. A 90-kDa protein serum marker for the prediction of progression to AIDS in a cohort of HIV-1+ homosexual men. AIDS Res Hum Retroviruses. 1993;9:811–6.

    PubMed  CAS  Google Scholar 

  135. Bugelski PJ, Ellens H, Hart TK, Kirsh RL. Soluble CD4 and dextran sulfate mediate release of gp120 from HIV-1: implications for clinical trials. J Acquir Immune Defic Syndr. 1991;4:923–4.

    PubMed  CAS  Google Scholar 

  136. Fuchs D, Spira TJ, Hausen A, et al. Neopterin as a predictive marker for disease progression in human immunodeficiency virus type 1 infection. Clin Chem. 1989;35:1746–9.

    PubMed  CAS  Google Scholar 

  137. Branson BM, Handsfield HH, Lampe MA, et al. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR Recomm Rep. 2006;55:1–17; quiz CE1–4.

    PubMed  Google Scholar 

  138. Bennett B, Branson B, Delaney K, Owen M, Pentella M, Werner B. HIV testing algorithms: a status report; Association of Public Health Laboratories and Centers for Disease Control and Prevention. 2009, p. 1–52. http://www.aphl.org/aphlprograms/infectious/hiv/Documents/ID_2009April_HIV-Testing-Algorithms-Status-Report.pdf. Accessed 2014 April 25.

  139. Gallo RC. Mechanism of disease induction by HIV. J Acquir Immune Defic Syndr. 1990;3:380–9.

    PubMed  CAS  Google Scholar 

  140. Varmus H. Retroviruses. Science. 1988;240:1427–35.

    PubMed  CAS  Google Scholar 

  141. Velpandi A, Nagashunmugam T, Otsuka T, Cartas M, Srinivasan A. Structure-function studies of HIV-1: influence of long terminal repeat U3 region sequences on virus production. DNA Cell Biol. 1992;11:369–76.

    PubMed  CAS  Google Scholar 

  142. Genomic structure of HIV-1 and HIV-2. https://www.google.com/search?q=genomic+structure+of+hiv&biw=989&bih=638&tbm=isch&imgil=4HY2N68OGflhtM%253A%253Bhttps%253A%252F%252Fencrypted-tbn2.gstatic.com%252Fimages%253Fq%253Dtbn%253AANd9GcSLy2XlSoTyDMTWnj3vyg-hOVSlM_BRU43s5n5ubtDyFluPWiKWtA%253B598%253B282%253BY2Ci0N6kBsMY1M%253Bhttp%25253A%25252F%25252Fi-base.info%25252Fqa%25252Ffactsheets%25252Fhiv-genome-explained&source=iu&usg=__tl4S9wjMZ7qrs0RdYSqBPHaASRw%3D&sa=X&ei=ADRlU9uyNrO-sQTkuoGQCA&ved=0CDAQ9QEwAQ#facrc=_&imgdii=_&imgrc=4HY2N68OGflhtM%253A%3BY2Ci0N6kBsMY1M%3Bhttp%253A%252F%252Fwww.mcld.co.uk%252Fhiv%252Fimages%252Fhiv-genomes.gif%3Bhttp%253A%252F%252Fi-base.info%252Fqa%252Ffactsheets%252Fhiv-genome-explained%3B598%3B282

    Google Scholar 

  143. Landmarks of the HIV-1, HIV-2, and SIV genomes. http://www.hiv.lanl.gov/content/immunology/pdf/2000/intro/GenomeMaps.pdf. Accessed 22 July 2013.

  144. Gallo RC. HIV–the cause of AIDS: an overview on its biology, mechanisms of disease induction, and our attempts to control it. J Acquir Immune Defic Syndr. 1988;1:521–35.

    PubMed  CAS  Google Scholar 

  145. Adamson CS, Salzwedel K, Freed EO. Virus maturation as a new HIV-1 therapeutic target. Expert Opin Ther Targets. 2009;13:895–908.

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Waheed AA, Freed EO. HIV type 1 Gag as a target for antiviral therapy. AIDS Res Hum Retroviruses. 2012;28:54–75.

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Hill M, Tachedjian G, Mak J. The packaging and maturation of the HIV-1 Pol proteins. Curr HIV Res. 2005;3:73–85.

    PubMed  CAS  Google Scholar 

  148. Caffrey M. HIV envelope: challenges and opportunities for development of entry inhibitors. Trends Microbiol. 2011;19:191–7.http://www.hiv.lanl.gov/content/immunology/pdf/2000/intro/GenomeMaps.pdf

  149. Strebel K. HIV accessory genes Vif and Vpu. Adv Pharmacol. 2007;55:199–232.

    PubMed  CAS  Google Scholar 

  150. Emerman M, Malim MH. HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science. 1998;280:1880–4.

    PubMed  CAS  Google Scholar 

  151. Rosen CA, Pavlakis GN. Tat and Rev: positive regulators of HIV gene expression. AIDS. 1990;4:499–509.

    PubMed  CAS  Google Scholar 

  152. Gallo RC. Tat as one key to HIV-induced immune pathogenesis and Tat (correction of Pat) toxoid as an important component of a vaccine. Proc Natl Acad Sci U S A. 1999;96:8324–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  153. Rezza G, Fiorelli V, Dorrucci M, et al. The presence of anti-Tat antibodies is predictive of long-term nonprogression to AIDS or severe immunodeficiency: findings in a cohort of HIV-1 seroconverters. J Infect Dis. 2005;191:1321–4.

    PubMed  Google Scholar 

  154. Pomerantz RJ, Seshamma T, Trono D. Efficient replication of human immunodeficiency virus type 1 requires a threshold level of Rev: potential implications for latency. J Virol. 1992;66:1809–13.

    PubMed  CAS  PubMed Central  Google Scholar 

  155. Quaranta MG, Mattioli B, Giordani L, Viora M. Immunoregulatory effects of HIV-1 Nef protein. Biofactors. 2009;35:169–74.

    PubMed  CAS  Google Scholar 

  156. Greenway AL, Holloway G, McPhee DA. HIV-1 Nef: a critical factor in viral-induced pathogenesis. Adv Pharmacol. 2000;48:299–343.

    PubMed  CAS  Google Scholar 

  157. Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature. 1998;391:397–401.

    PubMed  CAS  Google Scholar 

  158. James CO, Huang MB, Khan M, Garcia-Barrio M, Powell MD, Bond VC. Extracellular Nef protein targets CD4+ T cells for apoptosis by interacting with CXCR4 surface receptors. J Virol. 2004;78:3099–109.

    PubMed  CAS  PubMed Central  Google Scholar 

  159. Lenassi M, Cagney G, Liao M, et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic. 2010;11:110–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  160. Hanna Z, Priceputu E, Chrobak P, et al. Selective expression of human immunodeficiency virus Nef in specific immune cell populations of transgenic mice is associated with distinct AIDS-like phenotypes. J Virol. 2009;83:9743–58.

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Simard MC, Chrobak P, Kay DG, Hanna Z, Jothy S, Jolicoeur P. Expression of simian immunodeficiency virus nef in immune cells of transgenic mice leads to a severe AIDS-like disease. J Virol. 2002;76:3981–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  162. Yu X, Yu Y, Liu B, et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science. 2003;302:1056–60.

    PubMed  CAS  Google Scholar 

  163. Bishop KN, Holmes RK, Sheehy AM, Malim MH. APOBEC-mediated editing of viral RNA. Science. 2004;305:645.

    PubMed  CAS  Google Scholar 

  164. McNatt MW, Zang T, Hatziioannou T, et al. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants. PLoS Pathog. 2009;5:e1000300.

    PubMed  PubMed Central  Google Scholar 

  165. Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451:425–30.

    PubMed  CAS  Google Scholar 

  166. Fujita M, Otsuka M, Nomaguchi M, Adachi A. Multifaceted activity of HIV Vpr/Vpx proteins: the current view of their virological functions. Rev Med Virol. 2010;20:68–76.

    PubMed  CAS  Google Scholar 

  167. Andersen JL, Planelles V. The role of Vpr in HIV-1 pathogenesis. Curr HIV Res. 2005;3:43–51.

    PubMed  CAS  Google Scholar 

  168. Ardon O, Zimmerman ES, Andersen JL, DeHart JL, Blackett J, Planelles V. Induction of G2 arrest and binding to cyclophilin A are independent phenotypes of human immunodeficiency virus type 1 Vpr. J Virol. 2006;80:3694–700.

    PubMed  CAS  PubMed Central  Google Scholar 

  169. Sakai K, Dimas J, Lenardo MJ. The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest. Proc Natl Acad Sci U S A. 2006;103:3369–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984;312:763–7.

    PubMed  CAS  Google Scholar 

  171. Olafsson K, Smith MS, Marshburn P, Carter SG, Haskill S. Variation of HIV infectibility of macrophages as a function of donor, stage of differentiation, and site of origin. J Acquir Immune Defic Syndr. 1991;4:154–64.

    PubMed  CAS  Google Scholar 

  172. Potts BJ, Maury W, Martin MA. Replication of HIV-1 in primary monocyte cultures. Virology. 1990;175:465–76.

    PubMed  CAS  Google Scholar 

  173. Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996;272:1955–8.

    PubMed  CAS  Google Scholar 

  174. Atchison RE, Gosling J, Monteclaro FS, et al. Multiple extracellular elements of CCR5 and HIV-1 entry: dissociation from response to chemokines. Science. 1996;274:1924–6.

    PubMed  CAS  Google Scholar 

  175. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272:872–7.

    PubMed  CAS  Google Scholar 

  176. Wu Y, Yoder A. Chemokine coreceptor signaling in HIV-1 infection and pathogenesis. PLoS Pathog. 2009;5:e1000520.

    PubMed  PubMed Central  Google Scholar 

  177. Schuitemaker H, Van’t Wout AB, Lusso P. Clinical significance of HIV-1 coreceptor usage. J Transl Med. 2011;9 Suppl 1:S5.

    PubMed  CAS  PubMed Central  Google Scholar 

  178. Goodenow MM, Collman RG. HIV-1 coreceptor preference is distinct from target cell tropism: a dual-parameter nomenclature to define viral phenotypes. J Leukoc Biol. 2006;80:965–72.

    PubMed  CAS  Google Scholar 

  179. Zeinalipour-Loizidou E, Nicolaou C, Nicolaides A, Kostrikis LG. HIV-1 integrase: from biology to chemotherapeutics. Curr HIV Res. 2007;5:365–88.

    PubMed  CAS  Google Scholar 

  180. Markovitz DM. Infection with the human immunodeficiency virus type 2. Ann Intern Med. 1993;118:211–8.

    PubMed  CAS  Google Scholar 

  181. Mocroft A, Ledergerber B, Katlama C, et al. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet. 2003;362:22–9.

    PubMed  CAS  Google Scholar 

  182. Ray M, Logan R, Sterne JA, et al. The effect of combined antiretroviral therapy on the overall mortality of HIV-infected individuals. AIDS. 2010;24:123–37.

    PubMed  Google Scholar 

  183. Mocroft A, Sterne JA, Egger M, et al. Variable impact on mortality of AIDS-defining events diagnosed during combination antiretroviral therapy: not all AIDS-defining conditions are created equal. Clin Infect Dis. 2009;48:1138–51.

    PubMed  Google Scholar 

  184. Fox R, Eldred LJ, Fuchs EJ, et al. Clinical manifestations of acute infection with human immunodeficiency virus in a cohort of gay men. AIDS. 1987;1:35–8.

    PubMed  CAS  Google Scholar 

  185. Sullivan PS, Fideli U, Wall KM, et al. Prevalence of seroconversion symptoms and relationship to set-point viral load: findings from a subtype C epidemic, 1995-2009. AIDS. 2012;26:175–84.

    PubMed  PubMed Central  Google Scholar 

  186. Centers for Disease Control and Prevention. Monitoring selected national HIV prevention and care objectives by using HIV surveillance data-United States and 6 U.S. dependent areas-2010. HIV surveillance supplemental report, vol. 17. 2012.

    Google Scholar 

  187. Holmes CB, Losina E, Walensky RP, Yazdanpanah Y, Freedberg KA. Review of human immunodeficiency virus type 1-related opportunistic infections in sub-Saharan Africa. Clin Infect Dis. 2003;36:652–62.

    PubMed  Google Scholar 

  188. Falster K, Wand H, Donovan B, et al. Hospitalizations in a cohort of HIV patients in Australia, 1999-2007. AIDS. 2010;24:1329–39.

    PubMed  PubMed Central  Google Scholar 

  189. Engels EA. Non-AIDS-defining malignancies in HIV-infected persons: etiologic puzzles, epidemiologic perils, prevention opportunities. AIDS. 2009;23:875–85.

    PubMed  PubMed Central  Google Scholar 

  190. Joint United Nations Programme on HIV/AIDS (UNAIDS). Progress reports submitted by countries [online database]. Geneva; 2012.

    Google Scholar 

  191. Alter MJ. Epidemiology of viral hepatitis and HIV co-infection. J Hepatol. 2006;44:S6–9.

    PubMed  Google Scholar 

  192. Chen TY, Ding EL, Seage Iii GR, Kim AY. Meta-analysis: increased mortality associated with hepatitis C in HIV-infected persons is unrelated to HIV disease progression. Clin Infect Dis. 2009;49:1605–15.

    PubMed  PubMed Central  Google Scholar 

  193. Smit C, van den Berg C, Geskus R, Berkhout B, Coutinho R, Prins M. Risk of hepatitis-related mortality increased among hepatitis C virus/HIV-coinfected drug users compared with drug users infected only with hepatitis C virus: a 20-year prospective study. J Acquir Immune Defic Syndr. 2008;47:221–5.

    PubMed  Google Scholar 

  194. Image accessed at: http://www.google.com/imgres?imgurl=http%3A%2F%2Factvicto.org%2Fwp-content%2Fuploads%2F2013%2F09%2Friskgroup.jpg&imgrefurl=http%3A%2F%2Factvicto.org%2F2013%2F09%2F08%2Faidshiv-u-s-statistics-from-aids-gov%2F&docid=R3GT1G8WTTT3hM&tbnid=ZM31CojpwS_ZAM%3A&w=364&h=273&ei=t0JlU5vlFc6osASnoICoDg&ved=0CAIQxiAwAA&iact=c. Accessed 2014 April 30

    Google Scholar 

  195. Prejean J, Song R, Hernandez A, et al. Estimated HIV incidence in the United States, 2006–2009. PloS One. 2011;6:e17502.http://aids.gov/hiv-aids-basics/hiv-aids-101/statistics/

  196. Centers for Disease Control and Prevention. Estimated HIV incidence in the United States, 2007–2010. HIV surveillance supplemental report 2012, vol. 17. 2012.

    Google Scholar 

  197. Zhu T, Mo H, Wang N, et al. Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science. 1993;261:1179–81.

    PubMed  CAS  Google Scholar 

  198. Wawer MJ, Gray RH, Sewankambo NK, et al. Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect Dis. 2005;191:1403–9.

    PubMed  Google Scholar 

  199. Kim JH, Riolo RL, Koopman JS. HIV transmission by stage of infection and pattern of sexual partnerships. Epidemiology. 2010;21:676–84.

    PubMed  PubMed Central  Google Scholar 

  200. Brookmeyer R, Gail M. AIDS epidemiology: a quantitative approach. New York: Oxford University Press; 1994.

    Google Scholar 

  201. Ward JW, Deppe DA, Samson S, et al. Risk of human immunodeficiency virus infection from blood donors who later developed the acquired immunodeficiency syndrome. Ann Intern Med. 1987;106:61–2.

    PubMed  CAS  Google Scholar 

  202. Donegan E, Stuart M, Niland JC, et al. Infection with human immunodeficiency virus type 1 (HIV-1) among recipients of antibody-positive blood donations. Ann Intern Med. 1990;113:733–9.

    PubMed  CAS  Google Scholar 

  203. Busch MP, Young MJ, Samson SM, Mosley JW, Ward JW, Perkins HA. Risk of human immunodeficiency virus (HIV) transmission by blood transfusions before the implementation of HIV-1 antibody screening. The Transfusion Safety Study Group. Transfusion. 1991;31:4–11.

    PubMed  CAS  Google Scholar 

  204. European Collaborative Study. Risk factors for mother-to-child transmission of HIV-1. Lancet. 1992;339:1007–12.

    Google Scholar 

  205. Choopanya K, Martin M, Suntharasamai P, et al. Antiretroviral prophylaxis for HIV infection in injecting drug users in Bangkok, Thailand (the Bangkok Tenofovir Study): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2013;381:2083–90.

    PubMed  Google Scholar 

  206. Nicolosi A, Leite ML, Molinari S, Musicco M, Saracco A, Lazzarin A. Incidence and prevalence trends of HIV infection in intravenous drug users attending treatment centers in Milan and northern Italy, 1986–1990. J Acquir Immune Defic Syndr. 1992;5:365–73.

    PubMed  CAS  Google Scholar 

  207. Chaisson RE, Moss AR, Onishi R, Osmond D, Carlson JR. Human immunodeficiency virus infection in heterosexual intravenous drug users in San Francisco. Am J Public Health. 1987;77:169–72.

    PubMed  CAS  PubMed Central  Google Scholar 

  208. van den Hoek JA, Coutinho RA, van Haastrecht HJ, van Zadelhoff AW, Goudsmit J. Prevalence and risk factors of HIV infections among drug users and drug-using prostitutes in Amsterdam. AIDS. 1988;2:55–60.

    PubMed  Google Scholar 

  209. Sasse H, Salmaso S, Conti S. Risk behaviors for HIV-1 infection in Italian drug users: report from a multicenter study. First Drug User Multicenter Study Group. J Acquir Immune Defic Syndr. 1989;2:486–96.

    PubMed  CAS  Google Scholar 

  210. Vlahov D, Munoz A, Anthony JC, Cohn S, Celentano DD, Nelson KE. Association of drug injection patterns with antibody to human immunodeficiency virus type 1 among intravenous drug users in Baltimore, Maryland. Am J Epidemiol. 1990;132:847–56.

    PubMed  CAS  Google Scholar 

  211. Oyaizu N, McCloskey TW, Coronesi M, Chirmule N, Kalyanaraman VS, Pahwa S. Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals. Blood. 1993;82:3392–400.

    PubMed  CAS  Google Scholar 

  212. Shapshak P, McCoy CB, Rivers JE, et al. Inactivation of human immunodeficiency virus-1 at short time intervals using undiluted bleach. J Acquir Immune Defic Syndr. 1993;6:218–9.

    PubMed  CAS  Google Scholar 

  213. Hughes JP, Baeten JM, Lingappa JR, et al. Determinants of per-coital-act HIV-1 infectivity among African HIV-1-serodiscordant couples. J Infect Dis. 2012;205:358–65.

    PubMed  CAS  PubMed Central  Google Scholar 

  214. Powers KA, Poole C, Pettifor AE, Cohen MS. Rethinking the heterosexual infectivity of HIV-1: a systematic review and meta-analysis. Lancet Infect Dis. 2008;8:553–63.

    PubMed  PubMed Central  Google Scholar 

  215. Boily MC, Baggaley RF, Wang L, et al. Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies. Lancet Infect Dis. 2009;9:118–29.

    PubMed  Google Scholar 

  216. Weiss SH, Saxinger WC, Rechtman D, et al. HTLV-III infection among health care workers. Association with needle-stick injuries. JAMA. 1985;254:2089–93.

    PubMed  CAS  Google Scholar 

  217. Henderson DK. HIV transmission in the health care environment. In: Broder S, Merigan TCJ, Bolognesi D, editors. Textbook of AIDS medicine. Baltimore: Williams & Wilkins; 1994. p. 831–9.

    Google Scholar 

  218. Ou CY, Takebe Y, Weniger BG, et al. Independent introduction of two major HIV-1 genotypes into distinct high-risk populations in Thailand. Lancet. 1993;341:1171–4.

    PubMed  CAS  Google Scholar 

  219. Wright NH, Vanichseni S, Akarasewi P, Wasi C, Choopanya K. Was the 1988 HIV epidemic among Bangkok’s injecting drug users a common source outbreak? AIDS. 1994;8:529–32.

    PubMed  CAS  Google Scholar 

  220. Hughes GJ, Fearnhill E, Dunn D, Lycett SJ, Rambaut A, Leigh Brown AJ. Molecular phylodynamics of the heterosexual HIV epidemic in the United Kingdom. PLoS Pathog. 2009;5:e1000590.

    PubMed  PubMed Central  Google Scholar 

  221. Skar H, Axelsson M, Berggren I, et al. Dynamics of two separate but linked HIV-1 CRF01_AE outbreaks among injection drug users in Stockholm, Sweden, and Helsinki, Finland. J Virol. 2011;85:510–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  222. Cassels S, Clark SJ, Morris M. Mathematical models for HIV transmission dynamics: tools for social and behavioral science research. J Acquir Immune Defic Syndr. 2008;47 Suppl 1:S34–9.

    PubMed  PubMed Central  Google Scholar 

  223. AIDSVu, www.aidsvu.org. Emory University, Rollins School of Public Health. Accessed 30 Apr 2014.

  224. Centers for Disease Control and Prevention. Human immunodeficiency virus infection in the United States: A review of current knowledge. Morb Mortal Wkly Rep. 1987;36(S-6):1–48.

    Google Scholar 

  225. Mann JM, Francis H, Quinn T, et al. Surveillance for AIDS in a central African city. Kinshasa, Zaire. JAMA. 1986;255:3255–9.http://pathmicro.med.sc.edu/lecture/hiv5.htm

  226. Disease Control Department MoPHaFoPH, Khon Kaen University. Thailand Country Development Partnership in Health (CDP-Health) component 1: improving the effectiveness of Thailand’s HIV response. Thailand: International Health Policy Program (IHPP), Health Intervention and Technology Assessment Program (HITAP); 2009.

    Google Scholar 

  227. CDC. Diagnoses of HIV infection in the United States and dependent areas, 2011. HIV Surveillance Report 2013; vol 23.

    Google Scholar 

  228. Centers for Disease Control and Prevention. HIV Surveillance Report 23: 2013 (no page #) At: http://www.cdc.gov/hiv/statistics/basics/. Accessed 2014 April 29

    Google Scholar 

  229. Gardner Jr LI, Brundage JF, McNeil JG, et al. Predictors of HIV-1 disease progression in early- and late-stage patients: the U.S. Army Natural History Cohort. Military Medical Consortium for Applied Retrovirology. J Acquir Immune Defic Syndr. 1992;5:782–93.

    PubMed  Google Scholar 

  230. McQuillan GM, Granade T, Feldman JW. Seroprevalence of human immunodeficiency virus in the US household population aged 18–49 years: the National Health and Nutrition Examination Surveys, 1999–2006. J Acquir Immune Defic Syndr. 2010;53:117–23.

    Google Scholar 

  231. Mann JM, Tarantola D, Netter TW. AIDS in the world. Cambridge: Harvard University Press; 1992.

    Google Scholar 

  232. Song W, He D, Brill I, et al. Disparate associations of HLA class I markers with HIV-1 acquisition and control of viremia in an African population. PloS One. 2011;6:e23469.

    PubMed  CAS  PubMed Central  Google Scholar 

  233. Auger I, Thomas P, De Gruttola V, et al. Incubation periods for paediatric AIDS patients. Nature. 1988;336:575–7.

    PubMed  CAS  Google Scholar 

  234. Oxtoby MJ. Perinatally acquired human immunodeficiency virus infection. Pediatr Infect Dis J. 1990;9:609–19.

    PubMed  CAS  Google Scholar 

  235. Saathoff E, Pritsch M, Geldmacher C, et al. Viral and host factors associated with the HIV-1 viral load setpoint in adults from Mbeya Region, Tanzania. J Acquir Immune Defic Syndr. 2010;54:324–30.

    PubMed  PubMed Central  Google Scholar 

  236. Thorsteinsson K, Ladelund S, Jensen-Fangel S, et al. Impact of gender on the risk of AIDS-defining illnesses and mortality in Danish HIV-1-infected patients: a nationwide cohort study. Scand J Infect Dis. 2012;44:766–75.

    PubMed  Google Scholar 

  237. Rosenberg PS, Levy ME, Brundage JF, et al. Population-based monitoring of an urban HIV/AIDS epidemic. Magnitude and trends in the District of Columbia. JAMA. 1992;268:495–503.

    PubMed  CAS  Google Scholar 

  238. Brundage JF. Epidemiology of HIV infection and AIDS in the United States. Dermatol Clin. 1991;9:443–52.

    PubMed  CAS  Google Scholar 

  239. Millett GA, Peterson JL, Flores SA, et al. Comparisons of disparities and risks of HIV infection in black and other men who have sex with men in Canada, UK, and USA: a meta-analysis. Lancet. 2012;380:341–8.

    PubMed  Google Scholar 

  240. Newell ML, Brahmbhatt H, Ghys PD. Child mortality and HIV infection in Africa: a review. AIDS. 2004;18 Suppl 2:S27–34.

    PubMed  Google Scholar 

  241. Mulder DW, Nunn AJ, Kamali A, Nakiyingi J, Wagner HU, Kengeya-Kayondo JF. Two-year HIV-1-associated mortality in a Ugandan rural population. Lancet. 1994;343:1021–3.

    PubMed  CAS  Google Scholar 

  242. Easterbrook PJ, Farzadegan H, Hoover DR, et al. Racial differences in rate of CD4 decline in HIV-1-infected homosexual men. AIDS. 1996;10:1147–55.

    PubMed  CAS  Google Scholar 

  243. Smith PR, Sarner L, Murphy M, et al. Ethnicity and discordance in plasma HIV-1 RNA viral load and CD4+ lymphocyte count in a cohort of HIV-1-infected individuals. J Clin Virol. 2003;26:101–7.

    PubMed  CAS  Google Scholar 

  244. Muller V, von Wyl V, Yerly S, et al. African descent is associated with slower CD4 cell count decline in treatment-naive patients of the Swiss HIV Cohort Study. AIDS. 2009;23:1269–76.

    PubMed  Google Scholar 

  245. Shea PR, Shianna KV, Carrington M, Goldstein DB. Host genetics of HIV acquisition and viral control. Annu Rev Med. 2013;64:203–17.

    PubMed  CAS  Google Scholar 

  246. Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996;273:1856–62.

    PubMed  CAS  Google Scholar 

  247. Arenzana-Seisdedos F, Parmentier M. Genetics of resistance to HIV infection: Role of co-receptors and co-receptor ligands. Semin Immunol. 2006;18:387–403.

    PubMed  CAS  Google Scholar 

  248. Ioannidis JP, Rosenberg PS, Goedert JJ, et al. Effects of CCR5-Delta, 32, CCR2–64I, and SDF-1 3′A alleles on HIV-1 disease progression: An international meta-analysis of individual-patient data. Ann Intern Med. 2001;135:782–95.

    PubMed  CAS  Google Scholar 

  249. Tang J, Shelton B, Makhatadze NJ, et al. Distribution of chemokine receptor CCR2 and CCR5 genotypes and their relative contribution to human immunodeficiency virus type 1 (HIV-1) seroconversion, early HIV-1 RNA concentration in plasma, and later disease progression. J Virol. 2002;76:662–72.

    PubMed  CAS  PubMed Central  Google Scholar 

  250. Gonzalez E, Kulkarni H, Bolivar H, et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science. 2005;307:1434–40.

    PubMed  CAS  Google Scholar 

  251. Urban TJ, Weintrob AC, Fellay J, et al. CCL3L1 and HIV/AIDS susceptibility. Nat Med. 2009;15:1110–2.

    PubMed  CAS  PubMed Central  Google Scholar 

  252. Liu S, Yao L, Ding D, Zhu H. CCL3L1 copy number variation and susceptibility to HIV-1 infection: a meta-analysis. PloS One. 2010;5:e15778.

    PubMed  PubMed Central  Google Scholar 

  253. Kaslow RA, Carrington M, Apple R, et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med. 1996;2:405–11.

    PubMed  CAS  Google Scholar 

  254. Carrington M, Nelson GW, Martin MP, et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science. 1999;283:1748–52.

    PubMed  CAS  Google Scholar 

  255. Pereyra F, Jia X, McLaren PJ, et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science. 2010;330:1551–7.

    PubMed  PubMed Central  Google Scholar 

  256. Yue L, Prentice HA, Farmer P, et al. Cumulative impact of host and viral factors on HIV-1 viral load control during early infection. J Virol. 2013;87:708–15.

    PubMed  CAS  PubMed Central  Google Scholar 

  257. Kiepiela P, Leslie AJ, Honeyborne I, et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature. 2004;432:769–75.

    PubMed  CAS  Google Scholar 

  258. Kawashima Y, Pfafferott K, Frater J, et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature. 2009;458:641–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  259. Crawford H, Lumm W, Leslie A, et al. Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. J Exp Med. 2009;206:909–21.

    PubMed  CAS  PubMed Central  Google Scholar 

  260. McLaren PJ, Ripke S, Pelak K, et al. Fine-mapping classical HLA variation associated with durable host control of HIV-1 infection in African Americans. Hum Mol Genet. 2012;21:4334–47.

    PubMed  CAS  PubMed Central  Google Scholar 

  261. Tang J, Penman-Aguilar A, Lobashevsky E, Allen S, Kaslow RA. HLA-DRB1 and -DQB1 alleles and haplotypes in Zambian couples and their associations with heterosexual transmission of HIV type 1. J Infect Dis. 2004;189:1696–704.

    PubMed  CAS  Google Scholar 

  262. Julg B, Moodley ES, Qi Y, et al. Possession of HLA class II DRB1*1303 associates with reduced viral loads in chronic HIV-1 clade C and B infection. J Infect Dis. 2011;203:803–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  263. Merino AM, Song W, He D, et al. HLA-B signal peptide polymorphism influences the rate of HIV-1 acquisition but not viral load. J Infect Dis. 2012;205:1797–805.

    PubMed  CAS  PubMed Central  Google Scholar 

  264. Martin MP, Qi Y, Gao X, et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet. 2007;39:733–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  265. Brites C, Sampalo J, Oliveira A. HIV/human T-cell lymphotropic virus coinfection revisited: impact on AIDS progression. AIDS Rev. 2009;11:8–16.

    PubMed  Google Scholar 

  266. Casseb J, Posada-Vergara MP, Montanheiro P, et al. T CD4+ cells count among patients co-infected with human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1): high prevalence of tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). Rev Inst Med Trop Sao Paulo. 2007;49:231–3.

    PubMed  Google Scholar 

  267. Primo JR, Brites C, Oliveira Mde F, Moreno-Carvalho O, Machado M, Bittencourt AL. Infective dermatitis and human T cell lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis in childhood and adolescence. Clin Infect Dis. 2005;41:535–41.

    PubMed  Google Scholar 

  268. Casoli C, Pilotti E, Bertazzoni U. Molecular and cellular interactions of HIV-1/HTLV coinfection and impact on AIDS progression. AIDS Rev. 2007;9:140–9.

    PubMed  Google Scholar 

  269. Schim van der Loeff MF, Jaffar S, Aveika AA, et al. Mortality of HIV-1, HIV-2 and HIV-1/HIV-2 dually infected patients in a clinic-based cohort in the Gambia. AIDS. 2002;16:1775–83.

    PubMed  Google Scholar 

  270. Whittle H, Morris J, Todd J, et al. HIV-2-infected patients survive longer than HIV-1-infected patients. AIDS. 1994;8:1617–20.

    PubMed  CAS  Google Scholar 

  271. Esbjornsson J, Mansson F, Kvist A, et al. Inhibition of HIV-1 disease progression by contemporaneous HIV-2 infection. N Engl J Med. 2012;367:224–32.

    PubMed  Google Scholar 

  272. Aaby P, Poulsen AG, Larsen O, et al. Does HIV-2 protect against HIV-1 infection? AIDS. 1997;11:939–40.

    PubMed  CAS  Google Scholar 

  273. Getahun H, Gunneberg C, Granich R, Nunn P. HIV infection-associated tuberculosis: the epidemiology and the response. Clin Infect Dis. 2010;50 Suppl 3:S201–7.

    PubMed  Google Scholar 

  274. Kwan CK, Ernst JD. HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev. 2011;24:351–76.

    PubMed  PubMed Central  Google Scholar 

  275. Morris L, Martin DJ, Bredell H, et al. Human immunodeficiency virus-1 RNA levels and CD4 lymphocyte counts, during treatment for active tuberculosis, in South African patients. J Infect Dis. 2003;187:1967–71.

    PubMed  Google Scholar 

  276. Laguno M, Murillas J, Blanco JL, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for treatment of HIV/HCV co-infected patients. AIDS. 2004;18:F27–36.

    PubMed  CAS  Google Scholar 

  277. Chung RT, Andersen J, Volberding P, et al. Peginterferon Alfa-2a plus ribavirin versus interferon alfa-2a plus ribavirin for chronic hepatitis C in HIV-coinfected persons. N Engl J Med. 2004;351:451–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  278. de Ledinghen V, Barreiro P, Foucher J, et al. Liver fibrosis on account of chronic hepatitis C is more severe in HIV-positive than HIV-negative patients despite antiretroviral therapy. J Viral Hepat. 2008;15:427–33.

    PubMed  Google Scholar 

  279. Kim AY, Chung RT. Coinfection with HIV-1 and HCV–a one-two punch. Gastroenterology. 2009;137:795–814.

    PubMed  CAS  PubMed Central  Google Scholar 

  280. Braitstein P, Zala C, Yip B, et al. Immunologic response to antiretroviral therapy in hepatitis C virus-coinfected adults in a population-based HIV/AIDS treatment program. J Infect Dis. 2006;193:259–68.

    PubMed  CAS  Google Scholar 

  281. Operskalski EA, Kovacs A. HIV/HCV co-infection: pathogenesis, clinical complications, treatment, and new therapeutic technologies. Curr HIV/AIDS Rep. 2011;8:12–22.

    PubMed  PubMed Central  Google Scholar 

  282. Heringlake S, Ockenga J, Tillmann HL, et al. GB virus C/hepatitis G virus infection: a favorable prognostic factor in human immunodeficiency virus-infected patients? J Infect Dis. 1998;177:1723–6.

    PubMed  CAS  Google Scholar 

  283. Williams CF, Klinzman D, Yamashita TE, et al. Persistent GB virus C infection and survival in HIV-infected men. N Engl J Med. 2004;350:981–90.

    PubMed  CAS  Google Scholar 

  284. Zhang W, Chaloner K, Tillmann HL, Williams CF, Stapleton JT. Effect of early and late GB virus C viraemia on survival of HIV-infected individuals: a meta-analysis. HIV Med. 2006;7:173–80.

    PubMed  CAS  Google Scholar 

  285. Gretch D. Editorial commentary: advocating the concept of GB virus C biotherapy against AIDS. Clin Infect Dis. 2012;55:1020–1.

    PubMed  PubMed Central  Google Scholar 

  286. Vahidnia F, Petersen M, Stapleton JT, Rutherford GW, Busch M, Custer B. Acquisition of GB virus type C and lower mortality in patients with advanced HIV disease. Clin Infect Dis. 2012;55:1012–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  287. Friedman H, Pross S, Klein TW. Addictive drugs and their relationship with infectious diseases. FEMS Immunol Med Microbiol. 2006;47:330–42.

    PubMed  CAS  Google Scholar 

  288. Hahn JA, Samet JH. Alcohol and HIV disease progression: weighing the evidence. Curr HIV/AIDS Rep. 2010;7:226–33.

    PubMed  PubMed Central  Google Scholar 

  289. Mehta S, Fawzi W. Effects of vitamins, including vitamin A, on HIV/AIDS patients. Vitam Horm. 2007;75:355–83.

    PubMed  CAS  Google Scholar 

  290. Heffron R, Mugo N, Ngure K, et al. Hormonal contraceptive use and risk of HIV-1 disease progression. AIDS. 2013;27:261–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  291. Poulsen AG, Kvinesdal B, Aaby P, et al. Prevalence of and mortality from human immunodeficiency virus type 2 in Bissau, West Africa. Lancet. 1989;1:827–31.

    PubMed  CAS  Google Scholar 

  292. Poulsen AG, Aaby P, Gottschau A, et al. HIV-2 infection in Bissau, West Africa, 1987–1989: incidence, prevalences, and routes of transmission. J Acquir Immune Defic Syndr. 1993;6:941–8.

    PubMed  CAS  Google Scholar 

  293. Kanki PJ, Travers KU, MBoup S, et al. Slower heterosexual spread of HIV-2 than HIV-1. Lancet. 1994;343:943–6.

    PubMed  CAS  Google Scholar 

  294. Centers for Disease Control and Prevention (CDC). HIV-2 Infection Surveillance – United States, 1987–2009. MMWR Morb Mortal Wkly Rep. 2011;60:985–8.

    Google Scholar 

  295. Mota-Miranda A, Gomes H, Marques R, et al. HIV-2 infection with a long asymptomatic period. J Infect. 1995;31:163–4.

    PubMed  CAS  Google Scholar 

  296. Matheron S, Courpotin C, Simon F, et al. Vertical transmission of HIV-2. Lancet. 1990;335:1103–4.

    PubMed  CAS  Google Scholar 

  297. Campbell-Yesufu OT, Gandhi RT. Update on human immunodeficiency virus (HIV)-2 infection. Clin Infect Dis. 2011;52:780–7.

    PubMed  PubMed Central  Google Scholar 

  298. van der Loeff MF, Awasana AA, Sarge-Njie R, et al. Sixteen years of HIV surveillance in a West African research clinic reveals divergent epidemic trends of HIV-1 and HIV-2. Int J Epidemiol. 2006;35:1322–8.

    PubMed  Google Scholar 

  299. Yindom LM, Leligdowicz A, Martin MP, et al. Influence of HLA class I and HLA-KIR compound genotypes on HIV-2 infection and markers of disease progression in a Manjako community in West Africa. J Virol. 2010;84:8202–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  300. Centers for Disease Control and prevention. Update: Evaluation of human T-lymphotropic virus type III/lymphadenopathy-associated virus infection in health-care personnel – United States. Morbid Mortal Week Rep. 1985;34:575–8.

    Google Scholar 

  301. Centers for Disease Control and Prevention. HIV transmission between two adolescent brothers with hemophilia. Morbid Mortal Week Rep. 1993;42:948–95.

    Google Scholar 

  302. Centers for Disease Control and Prevention. Human immunodeficiency virus transmission in household settings – United States. Morbid Mortal Week Rep. 1994;43:347–56.

    Google Scholar 

  303. Kingsley LA, Detels R, Kaslow R, et al. Risk factors for seroconversion to human immunodeficiency virus among male homosexuals. Results from the Multicenter AIDS Cohort Study. Lancet. 1987;1:345–9.

    PubMed  CAS  Google Scholar 

  304. Melbye M, Biggar RJ, Ebbesen P, et al. Seroepidemiology of HTLV-III antibody in Danish homosexual men: prevalence, transmission, and disease outcome. Br Med J (Clin Res Ed). 1984;289:573–5.

    CAS  Google Scholar 

  305. Bartholomew C, Saxinger WC, Clark JW, et al. Transmission of HTLV-I and HIV among homosexual men in Trinidad. JAMA. 1987;257:2604–8.

    PubMed  CAS  Google Scholar 

  306. Joint United Nations Programme on HIV/AIDS (UNAIDS). New HIV infections by mode of transmission in West Africa: a multi country analysis. Geneva; 2010.

    Google Scholar 

  307. Centers for Disease Control and Prevention. Prevalence and awareness of HIV infection among men who have sex with men – 21 cities, United States, 2008. Morb Mortal Weekly Rep. 2010;59:1201–7.

    Google Scholar 

  308. Beyrer C, Abdool Karim Q. The changing epidemiology of HIV in 2013. Curr Opin HIV AIDS. 2013;8:306–10.

    PubMed  Google Scholar 

  309. Pape JW, Liautaud B, Thomas F, et al. Characteristics of the acquired immunodeficiency syndrome (AIDS) in Haiti. N Engl J Med. 1983;309:945–50.

    PubMed  CAS  Google Scholar 

  310. Baral S, Beyrer C, Muessig K, et al. Burden of HIV among female sex workers in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12:538–49.

    PubMed  Google Scholar 

  311. Willerford DM, Bwayo JJ, Hensel M, et al. Human immunodeficiency virus infection among high-risk seronegative prostitutes in Nairobi. J Infect Dis. 1993;167:1414–7.

    PubMed  CAS  Google Scholar 

  312. Silverberg MJ, Chao C, Leyden WA, et al. HIV infection, immunodeficiency, viral replication, and the risk of cancer. Cancer Epidemiol Biomarkers Prev. 2011;20:2551–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  313. Kaul R, Rutherford J, Rowland-Jones SL, et al. HIV-1 Env-specific cytotoxic T-lymphocyte responses in exposed, uninfected Kenyan sex workers: a prospective analysis. AIDS. 2004;18:2087–9.

    PubMed  Google Scholar 

  314. Addo MM, Altfeld M, Brainard DM, et al. Lack of detectable HIV-1-specific CD8(+) T cell responses in Zambian HIV-1-exposed seronegative partners of HIV-1-positive individuals. J Infect Dis. 2011;203:258–62.

    PubMed  PubMed Central  Google Scholar 

  315. Wiessing L, van de Laar MJ, Donoghoe MC, Guarita B, Klempova D, Griffiths P. HIV among injecting drug users in Europe: increasing trends in the East. Euro Surveill. 2008;13:19067.

    PubMed  Google Scholar 

  316. Mathers BM, Degenhardt L, Phillips B, et al. Global epidemiology of injecting drug use and HIV among people who inject drugs: a systematic review. Lancet. 2008;372:1733–45.

    PubMed  Google Scholar 

  317. Kroner BL, Rosenberg PS, Aledort LM, Alvord WG, Goedert JJ. HIV-1 infection incidence among persons with hemophilia in the United States and western Europe, 1978–1990. Multicenter Hemophilia Cohort Study. J Acquir Immune Defic Syndr. 1994;7:279–86.

    PubMed  CAS  Google Scholar 

  318. Melbye M, Froebel KS, Madhok R, et al. HTLV-III seropositivity in European haemophiliacs exposed to Factor VIII concentrate imported from the USA. Lancet. 1984;2:1444–6.

    PubMed  CAS  Google Scholar 

  319. Velati C, Romano L, Fomiatti L, Baruffi L, Zanetti AR. Impact of nucleic acid testing for hepatitis B virus, hepatitis C virus, and human immunodeficiency virus on the safety of blood supply in Italy: a 6-year survey. Transfusion. 2008;48:2205–13.

    PubMed  Google Scholar 

  320. Wu Z, Liu Z, Detels R. HIV-1 infection in commercial plasma donors in China. Lancet. 1995;346:61–2.

    PubMed  CAS  Google Scholar 

  321. Reid SR. Injection drug use, unsafe medical injections, and HIV in Africa: a systematic review. Harm Reduct J. 2009;6:24.

    PubMed  PubMed Central  Google Scholar 

  322. HIV outbreaks linked to blood transfusions discovered in Central Asia since Kazakh doctors were convicted of criminal negligence. Medical News Today; 2007.

    Google Scholar 

  323. Cardo DM, Culver DH, Ciesielski CA, et al. A case–control study of HIV seroconversion in health care workers after percutaneous exposure. Centers for Disease Control and Prevention Needlestick Surveillance Group. N Engl J Med. 1997;337:1485–90.

    PubMed  CAS  Google Scholar 

  324. Panlilio AL, Cardo DM, Grohskopf LA, Heneine W, Ross CS. Updated U.S. Public Health Service guidelines for the management of occupational exposures to HIV and recommendations for postexposure prophylaxis. MMWR Recomm Rep. 2005;54:1–17.

    PubMed  Google Scholar 

  325. Merchant RC, Chee KJ, Liu T, Mayer KH. Incidence of visits for health care worker blood or body fluid exposures and HIV postexposure prophylaxis provision at Rhode Island emergency departments. J Acquir Immune Defic Syndr. 2008;47:358–68.

    PubMed  PubMed Central  Google Scholar 

  326. Merchant RC, Nettleton JE, Mayer KH, Becker BM. HIV post-exposure prophylaxis among police and corrections officers. Occup Med (Lond). 2008;58:502–5.

    Google Scholar 

  327. Centers for Disease Control. Update: investigations of persons treated by HIV-infected health-care workers – United States. MMWR Morb Mortal Wkly Rep. 1993;42:329–31, 37.

    Google Scholar 

  328. Centers for Disease Control. Unexplained immunodeficiency and opportunistic infections in infants – New York, New Jersey, California. MMWR Morb Mortal Wkly Rep. 1982;31:665–7.http://aidsinfo.nih.gov/contentfiles/lvguidelines/PerinatalGL.pdf

  329. Centers for Disease Control. AIDS trends. At: http://www.cdc.gov/hiv/pdf/statistics_surveillance_aidstrends.pdf. Accessed 29 Apr 2014.

  330. Centers for Disease Control and Prevention. Achievements in public health. Reduction in perinatal transmission of HIV infection – United States, 1985–2005. MMWR Morb Mortal Wkly Rep. 2006;55:592–7.

    Google Scholar 

  331. Recommendations for use of antiretroviral drugs in pregnant HIV-1-Infected women for maternal health and interventions to reduce perinatal HIV transmission in the United States. http://aidsinfo.nih.gov/contentfiles/lvguidelines/PerinatalGL.pdf. Accessed 13 Feb 2013.

  332. Townsend CL, Cortina-Borja M, Peckham CS, de Ruiter A, Lyall H, Tookey PA. Low rates of mother-to-child transmission of HIV following effective pregnancy interventions in the United Kingdom and Ireland, 2000–2006. AIDS. 2008;22:973–81.

    PubMed  Google Scholar 

  333. Tubiana R, Le Chenadec J, Rouzioux C, et al. Factors associated with mother-to-child transmission of HIV-1 despite a maternal viral load <500 copies/ml at delivery: a case–control study nested in the French perinatal cohort (EPF-ANRS CO1). Clin Infect Dis. 2010;50:585–96.

    PubMed  Google Scholar 

  334. Fitzgibbon JE, Gaur S, Frenkel LD, Laraque F, Edlin BR, Dubin DT. Transmission from one child to another of human immunodeficiency virus type 1 with a zidovudine-resistance mutation. N Engl J Med. 1993;329:1835–41.

    PubMed  CAS  Google Scholar 

  335. Centers for Disease Control and Prevention. HIV transmission between two adolescent brothers with hemophilia. MMWR Morb Mortal Wkly Rep. 1993;42:948–51.

    Google Scholar 

  336. Friedland GH, Saltzman BR, Rogers MF, et al. Lack of transmission of HTLV-III/LAV infection to household contacts of patients with AIDS or AIDS-related complex with oral candidiasis. N Engl J Med. 1986;314:344–9.

    PubMed  CAS  Google Scholar 

  337. Simonds RJ, Holmberg SD, Hurwitz RL, et al. Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med. 1992;326:726–32.

    PubMed  CAS  Google Scholar 

  338. Carael M, Van de Perre PH, Lepage PH, et al. Human immunodeficiency virus transmission among heterosexual couples in Central Africa. AIDS. 1988;2:201–5.

    PubMed  CAS  Google Scholar 

  339. Moss AR, Osmond D, Bacchetti P, Chermann JC, Barre-Sinoussi F, Carlson J. Risk factors for AIDS and HIV seropositivity in homosexual men. Am J Epidemiol. 1987;125:1035–47.

    PubMed  CAS  Google Scholar 

  340. Quinn TC, Glasser D, Cannon RO, et al. Human immunodeficiency virus infection among patients attending clinics for sexually transmitted diseases. N Engl J Med. 1988;318:197–203.

    PubMed  CAS  Google Scholar 

  341. Stamm WE, Handsfield HH, Rompalo AM, Ashley RL, Roberts PL, Corey L. The association between genital ulcer disease and acquisition of HIV infection in homosexual men. JAMA. 1988;260:1429–33.

    PubMed  CAS  Google Scholar 

  342. McClelland RS, Sangare L, Hassan WM, et al. Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. J Infect Dis. 2007;195:698–702.

    PubMed  Google Scholar 

  343. Quinlivan EB, Patel SN, Grodensky CA, Golin CE, Tien HC, Hobbs MM. Modeling the impact of Trichomonas vaginalis infection on HIV transmission in HIV-infected individuals in medical care. Sex Transm Dis. 2012;39:671–7.

    PubMed  PubMed Central  Google Scholar 

  344. Wasserheit JN. Epidemiological synergy. Interrelationships between human immunodeficiency virus infection and other sexually transmitted diseases. Sex Transm Dis. 1992;19:61–77.

    PubMed  CAS  Google Scholar 

  345. Fleming DT, Wasserheit JN. From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm Infect. 1999;75:3–17.

    PubMed  CAS  PubMed Central  Google Scholar 

  346. Cohen CR, Lingappa JR, Baeten JM, et al. Bacterial vaginosis associated with increased risk of female-to-male HIV-1 transmission: a prospective cohort analysis among African couples. PLoS Med. 2012;9:e1001251.

    PubMed  PubMed Central  Google Scholar 

  347. Celum C, Wald A, Lingappa JR, et al. Acyclovir and transmission of HIV-1 from persons infected with HIV-1 and HSV-2. N Engl J Med. 2010;362:427–39.

    PubMed  CAS  PubMed Central  Google Scholar 

  348. Aaby P, Ariyoshi K, Buckner M, et al. Age of wife as a major determinant of male-to-female transmission of HIV-2 infection: a community study from rural West Africa. AIDS. 1996;10:1585–90.

    PubMed  CAS  Google Scholar 

  349. Naucler A, Albino P, Da Silva AP, Biberfeld G. Sexually transmitted diseases and sexual behaviour as risk factors for HIV-2 infection in Bissau, Guinea Bissau. Int J STD AIDS. 1993;4:217–21.

    PubMed  CAS  Google Scholar 

  350. Pantaleo G, Graziosi C, Fauci AS. New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med. 1993;328:327–35.

    PubMed  CAS  Google Scholar 

  351. Phillips AN, Lee CA, Elford J, Janossy G, Kernoff PB. The cumulative risk of AIDS as the CD4 lymphocyte count declines. J Acquir Immune Defic Syndr. 1992;5:148–52.

    PubMed  CAS  Google Scholar 

  352. Schnittman SM, Greenhouse JJ, Psallidopoulos MC, et al. Increasing viral burden in CD4+ T cells from patients with human immunodeficiency virus (HIV) infection reflects rapidly progressive immunosuppression and clinical disease. Ann Intern Med. 1990;113:438–43.

    PubMed  CAS  Google Scholar 

  353. Brenchley JM, Douek DC. The mucosal barrier and immune activation in HIV pathogenesis. Curr Opin HIV AIDS. 2008;3:356–61.

    PubMed  PubMed Central  Google Scholar 

  354. Brenchley JM, Hill BJ, Ambrozak DR, et al. T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis. J Virol. 2004;78:1160–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  355. Brenchley JM, Schacker TW, Ruff LE, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004;200:749–59.

    PubMed  CAS  PubMed Central  Google Scholar 

  356. Di Rienzo AM, Petronini PG, Guetard D, et al. Modulation of cell growth and host protein synthesis during HIV infection in vitro. J Acquir Immune Defic Syndr. 1992;5:921–9.

    PubMed  Google Scholar 

  357. Fauci AS, Schnittman SM, Poli G, Koenig S, Pantaleo G. NIH conference. Immunopathogenic mechanisms in human immunodeficiency virus (HIV) infection. Ann Intern Med. 1991;114:678–93.

    PubMed  CAS  Google Scholar 

  358. Piatak Jr M, Yang LC, Luk KC, et al. Viral dynamics in primary HIV-1 infection. Lancet. 1993;341:1099.

    PubMed  Google Scholar 

  359. Cole AM. Innate host defense of human vaginal and cervical mucosae. Curr Top Microbiol Immunol. 2006;306:199–230.

    PubMed  CAS  Google Scholar 

  360. Pope M, Haase AT. Transmission, acute HIV-1 infection and the quest for strategies to prevent infection. Nat Med. 2003;9:847–52.

    PubMed  CAS  Google Scholar 

  361. Embretson J, Zupancic M, Ribas JL, et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature. 1993;362:359–62.

    PubMed  CAS  Google Scholar 

  362. Haase AT. Targeting early infection to prevent HIV-1 mucosal transmission. Nature. 2010;464:217–23.

    PubMed  CAS  Google Scholar 

  363. Keele BF, Giorgi EE, Salazar-Gonzalez JF, et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A. 2008;105:7552–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  364. Bradbury J. HIV-1-resistant individuals may lack HIV-1 coreceptor. Lancet. 1996;348:463.

    PubMed  CAS  Google Scholar 

  365. Huang Y, Paxton WA, Wolinsky SM, et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nature Med. 1996;2:1240–3.

    PubMed  CAS  Google Scholar 

  366. Cicala C, Martinelli E, McNally JP, et al. The integrin alpha4beta7 forms a complex with cell-surface CD4 and defines a T-cell subset that is highly susceptible to infection by HIV-1. Proc Natl Acad Sci U S A. 2009;106:20877–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  367. Quinn TC, Wawer MJ, Sewankambo N, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N Engl J Med. 2000;342:921–9.

    PubMed  CAS  Google Scholar 

  368. Fideli US, Allen SA, Musonda R, et al. Virologic and immunologic determinants of heterosexual transmission of human immunodeficiency virus type 1 in Africa. AIDS Res Hum Retroviruses. 2001;17:901–10.

    PubMed  PubMed Central  Google Scholar 

  369. Haaland RE, Hawkins PA, Salazar-Gonzalez J, et al. Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1. PLoS Pathog. 2009;5:e1000274.

    PubMed  PubMed Central  Google Scholar 

  370. Li H, Bar KJ, Wang S, et al. High multiplicity infection by HIV-1 in men who have sex with men. PLoS Pathog. 2010;6:e1000890.

    PubMed  PubMed Central  Google Scholar 

  371. Bar KJ, Li H, Chamberland A, et al. Wide variation in the multiplicity of HIV-1 infection among injection drug users. J Virol. 2010;84:6241–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  372. Zhang Z, Schuler T, Zupancic M, et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science. 1999;286:1353–7.

    PubMed  CAS  Google Scholar 

  373. Li Q, Duan L, Estes JD, et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature. 2005;434:1148–52.

    PubMed  CAS  Google Scholar 

  374. Miller CJ, Li Q, Abel K, et al. Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J Virol. 2005;79:9217–27.

    PubMed  CAS  PubMed Central  Google Scholar 

  375. Bogers WM, Koornstra WH, Dubbes RH, et al. Characteristics of primary infection of a European human immunodeficiency virus type 1 clade B isolate in chimpanzees. J Gen Virol. 1998;79(Pt 12):2895–903.

    PubMed  CAS  Google Scholar 

  376. Lindback S, Karlsson AC, Mittler J, et al. Viral dynamics in primary HIV-1 infection. Karolinska Institutet Primary HIV Infection Study Group. AIDS. 2000;14:2283–91.

    PubMed  CAS  Google Scholar 

  377. Little SJ, McLean AR, Spina CA, Richman DD, Havlir DV. Viral dynamics of acute HIV-1 infection. J Exp Med. 1999;190:841–50.

    PubMed  CAS  PubMed Central  Google Scholar 

  378. Spira AI, Marx PA, Patterson BK, et al. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med. 1996;183:215–25.

    PubMed  CAS  Google Scholar 

  379. Stafford MA, Corey L, Cao Y, Daar ES, Ho DD, Perelson AS. Modeling plasma virus concentration during primary HIV infection. J Theor Biol. 2000;203:285–301.

    PubMed  CAS  Google Scholar 

  380. Mehandru S, Poles MA, Tenner-Racz K, et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med. 2004;200:761–70.

    PubMed  CAS  PubMed Central  Google Scholar 

  381. Pandrea IV, Gautam R, Ribeiro RM, et al. Acute loss of intestinal CD4+ T cells is not predictive of simian immunodeficiency virus virulence. J Immunol. 2007;179:3035–46.

    PubMed  CAS  PubMed Central  Google Scholar 

  382. Veazey RS, DeMaria M, Chalifoux LV, et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science. 1998;280:427–31.

    PubMed  CAS  Google Scholar 

  383. Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Med. 2006;12:1365–71.

    PubMed  CAS  Google Scholar 

  384. Brenchley JM, Price DA, Douek DC. HIV disease: fallout from a mucosal catastrophe? Nature Immunol. 2006;7:235–9.

    CAS  Google Scholar 

  385. Deeks SG, Verdin E, McCune JM. Immunosenescence and HIV. Curr Opin Immunol. 2012;24:501–6.

    PubMed  CAS  Google Scholar 

  386. Armah KA, McGinnis K, Baker J, et al. HIV status, burden of comorbid disease, and biomarkers of inflammation, altered coagulation, and monocyte activation. Clin Infect Dis. 2012;55:126–36.

    PubMed  CAS  PubMed Central  Google Scholar 

  387. Pantaleo G, Graziosi C, Demarest JF, et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993;362:355–8.

    PubMed  CAS  Google Scholar 

  388. Tindall B, Cooper DA. Primary HIV infection: host responses and intervention strategies. AIDS. 1991;5:1–14.

    PubMed  CAS  Google Scholar 

  389. Luzuriaga K, McQuilken P, Alimenti A, Somasundaran M, Hesselton R, Sullivan JL. Early viremia and immune responses in vertical human immunodeficiency virus type 1 infection. J Infect Dis. 1993;167:1008–13.

    PubMed  CAS  Google Scholar 

  390. Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278:1295–300.

    PubMed  CAS  Google Scholar 

  391. Smith BA, Gartner S, Liu Y, et al. Persistence of infectious HIV on follicular dendritic cells. J Immunol. 2001;166:690–6.

    PubMed  CAS  Google Scholar 

  392. Furtado MR, Callaway DS, Phair JP, et al. Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. N Engl J Med. 1999;340:1614–22.

    PubMed  CAS  Google Scholar 

  393. Zhang L, Ramratnam B, Tenner-Racz K, et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med. 1999;340:1605–13.

    PubMed  CAS  Google Scholar 

  394. Borrow P, Lewicki H, Wei X, et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med. 1997;3:205–11.

    PubMed  CAS  Google Scholar 

  395. Henrard DR, Daar E, Farzadegan H, et al. Virologic and immunologic characterization of symptomatic and asymptomatic primary HIV-1 infection. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;9:305–10.

    PubMed  CAS  Google Scholar 

  396. Koup RA, Safrit JT, Cao Y, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994;68:4650–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  397. Letvin NL, Walker BD. Immunopathogenesis and immunotherapy in AIDS virus infections. Nat Med. 2003;9:861–6.

    PubMed  CAS  Google Scholar 

  398. Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature. 2005;434:1093–7.

    PubMed  CAS  Google Scholar 

  399. Mattapallil JJ, Letvin NL, Roederer M. T-cell dynamics during acute SIV infection. AIDS. 2004;18:13–23.

    PubMed  Google Scholar 

  400. Picker LJ. Immunopathogenesis of acute AIDS virus infection. Curr Opin Immunol. 2006;18:399–405.

    PubMed  CAS  Google Scholar 

  401. Rybarczyk BJ, Montefiori D, Johnson PR, West A, Johnston RE, Swanstrom R. Correlation between env V1/V2 region diversification and neutralizing antibodies during primary infection by simian immunodeficiency virus sm in rhesus macaques. J Virol. 2004;78:3561–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  402. Schmitz JE, Kuroda MJ, Santra S, et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science. 1999;283:857–60.

    PubMed  CAS  Google Scholar 

  403. Richman DD, Wrin T, Little SJ, Petropoulos CJ. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci U S A. 2003;100:4144–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  404. Wei X, Decker JM, Wang S, et al. Antibody neutralization and escape by HIV-1. Nature. 2003;422:307–12.

    PubMed  CAS  Google Scholar 

  405. Blaxhult A, Granath F, Lidman K, Giesecke J. The influence of age on the latency period to AIDS in people infected by HIV through blood transfusion. AIDS. 1990;4:125–9.

    PubMed  CAS  Google Scholar 

  406. Biggar RJ. AIDS incubation in 1891 HIV seroconverters from different exposure groups. International Registry of Seroconverters. AIDS. 1990;4:1059–66.

    PubMed  CAS  Google Scholar 

  407. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995;373:123–6.

    PubMed  CAS  Google Scholar 

  408. Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995;373:117–22.

    PubMed  CAS  Google Scholar 

  409. Anderson RW, Ascher MS, Sheppard HW. Direct HIV cytopathicity cannot account for CD4 decline in AIDS in the presence of homeostasis: a worst-case dynamic analysis. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17:245–52.

    PubMed  CAS  Google Scholar 

  410. Doitsh G, Cavrois M, Lassen KG, et al. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell. 2010;143:789–801.

    PubMed  CAS  PubMed Central  Google Scholar 

  411. Finkel TH, Tudor-Williams G, Banda NK, et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med. 1995;1:129–34.

    PubMed  CAS  Google Scholar 

  412. Garg H, Mohl J, Joshi A. HIV-1 induced bystander apoptosis. Viruses. 2012;4:3020–43.

    PubMed  CAS  PubMed Central  Google Scholar 

  413. Jekle A, Keppler OT, De Clercq E, Schols D, Weinstein M, Goldsmith MA. In vivo evolution of human immunodeficiency virus type 1 toward increased pathogenicity through CXCR4-mediated killing of uninfected CD4 T cells. J Virol. 2003;77:5846–54.

    PubMed  CAS  PubMed Central  Google Scholar 

  414. McCune JM. The dynamics of CD4+ T-cell depletion in HIV disease. Nature. 2001;410:974–9.

    PubMed  CAS  Google Scholar 

  415. Zeng M, Smith AJ, Wietgrefe SW, et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest. 2011;121:998–1008.

    PubMed  CAS  PubMed Central  Google Scholar 

  416. Gottlieb GS, Hawes SE, Nickle DC, Gottlieb GS, Hawes SE, Nickle DC, et al. Presenting plasma HIV RNA level and rate of CD4 T-cell decline. JAMA. 2007;297:805; author reply 6–7.

    PubMed  CAS  Google Scholar 

  417. Lima VD, Hogg RS, Montaner JS. Presenting plasma HIV RNA level and rate of CD4 T-cell decline. JAMA. 2007;297:805–6; author reply 6–7.

    PubMed  CAS  Google Scholar 

  418. Giorgi JV, Liu Z, Hultin LE, Cumberland WG, Hennessey K, Detels R. Elevated levels of CD38+ CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: results of 6 years of follow-up. The Los Angeles Center, Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr. 1993;6:904–12.

    PubMed  CAS  Google Scholar 

  419. Mocroft A, Bofill M, Lipman M, et al. CD8+, CD38+ lymphocyte percent: a useful immunological marker for monitoring HIV-1-infected patients. J Acquir Immune Defic Syndr. 1997;14:158–62.

    CAS  Google Scholar 

  420. Giorgi JV, Hultin LE, McKeating JA, et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis. 1999;179:859–70.

    PubMed  CAS  Google Scholar 

  421. Blankson JN. Control of HIV-1 replication in elite suppressors. Discov Med. 2010;9:261–6.

    PubMed  Google Scholar 

  422. Fellay J, Shianna KV, Ge D, et al. A whole-genome association study of major determinants for host control of HIV-1. Science. 2007;317:944–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  423. Bhattacharya T, Daniels M, Heckerman D, et al. Founder effects in the assessment of HIV polymorphisms and HLA allele associations. Science. 2007;315:1583–6.

    PubMed  CAS  Google Scholar 

  424. Goulder PJ, Phillips RE, Colbert RA, et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med. 1997;3:212–7.

    PubMed  CAS  Google Scholar 

  425. Goulder PJ, Walker BD. The great escape – AIDS viruses and immune control. Nature medicine. 1999;5:1233–5.

    PubMed  CAS  Google Scholar 

  426. Moore CB, John M, James IR, Christiansen FT, Witt CS, Mallal SA. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science. 2002;296:1439–43.

    PubMed  CAS  Google Scholar 

  427. Jin X, Bauer DE, Tuttleton SE, et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med. 1999;189:991–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  428. Javanbakht H, An P, Gold B, et al. Effects of human TRIM5alpha polymorphisms on antiretroviral function and susceptibility to human immunodeficiency virus infection. Virology. 2006;354:15–27.

    PubMed  CAS  Google Scholar 

  429. Sawyer SL, Wu LI, Akey JM, Emerman M, Malik HS. High-frequency persistence of an impaired allele of the retroviral defense gene TRIM5alpha in humans. Curr Biol. 2006;16:95–100.

    PubMed  CAS  Google Scholar 

  430. Speelmon EC, Livingston-Rosanoff D, Li SS, et al. Genetic association of the antiviral restriction factor TRIM5alpha with human immunodeficiency virus type 1 infection. J Virol. 2006;80:2463–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  431. Holmes RK, Malim MH, Bishop KN. APOBEC-mediated viral restriction: not simply editing? Trends Biochem Sci. 2007;32:118–28.

    PubMed  CAS  Google Scholar 

  432. Braaten D, Franke EK, Luban J. Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIV(CPZ)GAB but not group O HIV-1 or other primate immunodeficiency viruses. J Virol. 1996;70:4220–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  433. Tovo PA, de Martino M, Gabiano C, et al. Prognostic factors and survival in children with perinatal HIV-1 infection. The Italian Register for HIV Infections in Children. Lancet. 1992;339:1249–53.

    PubMed  CAS  Google Scholar 

  434. Turner BJ, Denison M, Eppes SC, Houchens R, Fanning T, Markson LE. Survival experience of 789 children with the acquired immunodeficiency syndrome. Pediatr Infect Dis J. 1993;12:310–20.

    PubMed  CAS  Google Scholar 

  435. Features of children perinatally infected with HIV-1 surviving longer than 5 years. Italian Register for HIV Infection in Children. Lancet. 1994;343:191–5.

    Google Scholar 

  436. Eyster ME, Rabkin CS, Hilgartner MW, et al. Human immunodeficiency virus-related conditions in children and adults with hemophilia: rates, relationship to CD4 counts, and predictive value. Blood. 1993;81:828–34.

    PubMed  CAS  Google Scholar 

  437. Pezzotti P, Rezza G, Lazzarin A, et al. Influence of gender, age, and transmission category on the progression from HIV seroconversion to AIDS. J Acquir Immune Defic Syndr. 1992;5:745–7.

    PubMed  CAS  Google Scholar 

  438. Rosenberg PS, Goedert JJ, Biggar RJ. Effect of age at seroconversion on the natural AIDS incubation distribution. Multicenter Hemophilia Cohort Study and the International Registry of Seroconverters. AIDS. 1994;8:803–10.

    PubMed  CAS  Google Scholar 

  439. Jaffar S, Grant AD, Whitworth J, Smith PG, Whittle H. The natural history of HIV-1 and HIV-2 infections in adults in Africa: a literature review. Bull World Health Organ. 2004;82:462–9.

    PubMed  PubMed Central  Google Scholar 

  440. Hansmann A, Schim van der Loeff MF, Kaye S, et al. Baseline plasma viral load and CD4 cell percentage predict survival in HIV-1- and HIV-2-infected women in a community-based cohort in the Gambia. J Acquir Immune Defic Syndr. 2005;38:335–41.

    PubMed  Google Scholar 

  441. Andersson S, Norrgren H, da Silva Z, et al. Plasma viral load in HIV-1 and HIV-2 singly and dually infected individuals in Guinea-Bissau, West Africa: significantly lower plasma virus set point in HIV-2 infection than in HIV-1 infection. Arch Intern Med. 2000;160:3286–93.

    PubMed  CAS  Google Scholar 

  442. Popper SJ, Sarr AD, Travers KU, et al. Lower human immunodeficiency virus (HIV) type 2 viral load reflects the difference in pathogenicity of HIV-1 and HIV-2. J Infect Dis. 1999;180:1116–21.

    PubMed  CAS  Google Scholar 

  443. Ariyoshi K, Jaffar S, Alabi AS, et al. Plasma RNA viral load predicts the rate of CD4 T cell decline and death in HIV-2-infected patients in West Africa. AIDS. 2000;14:339–44.

    PubMed  CAS  Google Scholar 

  444. Berry N, Ariyoshi K, Jaffar S, et al. Low peripheral blood viral HIV-2 RNA in individuals with high CD4 percentage differentiates HIV-2 from HIV-1 infection. J Hum Virol. 1998;1:457–68.

    PubMed  CAS  Google Scholar 

  445. Berry N, Jaffar S, Schim van der Loeff M, et al. Low level viremia and high CD4% predict normal survival in a cohort of HIV type-2-infected villagers. AIDS Res Hum Retroviruses. 2002;18:1167–73.

    PubMed  Google Scholar 

  446. Gottlieb GS, Sow PS, Hawes SE, et al. Equal plasma viral loads predict a similar rate of CD4+ T cell decline in human immunodeficiency virus (HIV) type 1- and HIV-2-infected individuals from Senegal, West Africa. J Infect Dis. 2002;185:905–14.

    PubMed  Google Scholar 

  447. Leligdowicz A, Rowland-Jones S. Tenets of protection from progression to AIDS: lessons from the immune responses to HIV-2 infection. Expert Rev Vaccines. 2008;7:319–31.

    PubMed  CAS  Google Scholar 

  448. Hanson A, Sarr AD, Shea A, et al. Distinct profile of T cell activation in HIV type 2 compared to HIV type 1 infection: differential mechanism for immunoprotection. AIDS Res Hum Retroviruses. 2005;21:791–8.

    PubMed  CAS  Google Scholar 

  449. Ariyoshi K, Schim van der Loeff M, Cook P, et al. Kaposi’s sarcoma in the Gambia, West Africa is less frequent in human immunodeficiency virus type 2 than in human immunodeficiency virus type 1 infection despite a high prevalence of human herpesvirus 8. J Hum Virol. 1998;1:193–9.

    PubMed  CAS  Google Scholar 

  450. Arien KK, Abraha A, Quinones-Mateu ME, Kestens L, Vanham G, Arts EJ. The replicative fitness of primary human immunodeficiency virus type 1 (HIV-1) group M, HIV-1 group O, and HIV-2 isolates. J Virol. 2005;79:8979–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  451. Blaak H, van der Ende ME, Boers PH, Schuitemaker H, Osterhaus AD. In vitro replication capacity of HIV-2 variants from long-term aviremic individuals. Virology. 2006;353:144–54.

    PubMed  CAS  Google Scholar 

  452. Alatrakchi N, Damond F, Matheron S, et al. Proliferative, IFNgamma and IL-2-producing T-cell responses to HIV-2 in untreated HIV-2 infection. AIDS. 2006;20:29–34.

    PubMed  CAS  Google Scholar 

  453. Duvall MG, Jaye A, Dong T, et al. Maintenance of HIV-specific CD4+ T cell help distinguishes HIV-2 from HIV-1 infection. J Immunol. 2006;176:6973–81.

    PubMed  CAS  Google Scholar 

  454. Duvall MG, Precopio ML, Ambrozak DA, et al. Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol. 2008;38:350–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  455. Leligdowicz A, Yindom LM, Onyango C, et al. Robust Gag-specific T cell responses characterize viremia control in HIV-2 infection. J Clin Invest. 2007;117:3067–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  456. Bjorling E, Scarlatti G, von Gegerfelt A, et al. Autologous neutralizing antibodies prevail in HIV-2 but not in HIV-1 infection. Virology. 1993;193:528–30.

    PubMed  CAS  Google Scholar 

  457. Schulz TF, Whitby D, Hoad JG, Corrah T, Whittle H, Weiss RA. Biological and molecular variability of human immunodeficiency virus type 2 isolates from The Gambia. J Virol. 1990;64:5177–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  458. Weiss RA, Clapham PR, Weber JN, et al. HIV-2 antisera cross-neutralize HIV-1. AIDS. 1988;2:95–100.

    PubMed  CAS  Google Scholar 

  459. Ylinen LM, Keckesova Z, Wilson SJ, Ranasinghe S, Towers GJ. Differential restriction of human immunodeficiency virus type 2 and simian immunodeficiency virus SIVmac by TRIM5alpha alleles. J Virol. 2005;79:11580–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  460. Ribeiro AC, Maia e Silva A, Santa-Marta M, et al. Functional analysis of Vif protein shows less restriction of human immunodeficiency virus type 2 by APOBEC3G. J Virol. 2005;79:823–33.

    PubMed  CAS  PubMed Central  Google Scholar 

  461. Wiegand HL, Doehle BP, Bogerd HP, Cullen BR. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J. 2004;23:2451–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  462. Zetola NM, Pilcher CD. Diagnosis and management of acute HIV infection. Infect Dis Clin North Am. 2007;21:19–48, vii.

    PubMed  Google Scholar 

  463. Bollinger RC, Brookmeyer RS, Mehendale SM, et al. Risk factors and clinical presentation of acute primary HIV infection in India. JAMA. 1997;278:2085–9.

    PubMed  CAS  Google Scholar 

  464. Celum CL, Buchbinder SP, Donnell D, et al. Early human immunodeficiency virus (HIV) infection in the HIV Network for Prevention Trials Vaccine Preparedness Cohort: risk behaviors, symptoms, and early plasma and genital tract virus load. J Infect Dis. 2001;183:23–35.

    PubMed  CAS  Google Scholar 

  465. Clark SJ, Saag MS, Decker WD, et al. High titers of cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection. N Engl J Med. 1991;324:954–60.

    PubMed  CAS  Google Scholar 

  466. Daar ES, Little S, Pitt J, et al. Diagnosis of primary HIV-1 infection. Los Angeles County Primary HIV Infection Recruitment Network. Ann Intern Med. 2001;134:25–9.

    PubMed  CAS  Google Scholar 

  467. Hecht FM, Busch MP, Rawal B, et al. Use of laboratory tests and clinical symptoms for identification of primary HIV infection. AIDS. 2002;16:1119–29.

    PubMed  Google Scholar 

  468. Cooper DA, Gold J, Maclean P, et al. Acute AIDS retrovirus infection. Definition of a clinical illness associated with seroconversion. Lancet. 1985;1:537–40.

    PubMed  CAS  Google Scholar 

  469. Kahn JO, Walker BD. Acute human immunodeficiency virus type 1 infection. N Engl J Med. 1998;339:33–9.

    PubMed  CAS  Google Scholar 

  470. Kassutto S, Rosenberg ES. Primary HIV type 1 infection. Clin Infect Dis. 2004;38:1447–53.

    PubMed  Google Scholar 

  471. Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol. 1994;68:6103–10.

    PubMed  CAS  PubMed Central  Google Scholar 

  472. Zaunders JJ, Kaufmann GR, Cunningham PH, et al. Increased turnover of CCR5+ and redistribution of CCR5–CD4 T lymphocytes during primary human immunodeficiency virus type 1 infection. J Infect Dis. 2001;183:736–43.

    PubMed  CAS  Google Scholar 

  473. Zaunders JJ, Moutouh-de Parseval L, Kitada S, et al. Polyclonal proliferation and apoptosis of CCR5+ T lymphocytes during primary human immunodeficiency virus type 1 infection: regulation by interleukin (IL)-2, IL-15, and Bcl-2. J Infect Dis. 2003;187:1735–47.

    PubMed  CAS  Google Scholar 

  474. Blankson JN. Primary HIV-1 infection: to treat or not to treat? AIDS Read. 2005;15:245–6, 9–51.

    PubMed  Google Scholar 

  475. Fidler S, Fox J, Porter K, Weber J. Primary HIV infection: to treat or not to treat? Curr Opin Infect Dis. 2008;21:4–10.

    PubMed  Google Scholar 

  476. Bell SK, Little SJ, Rosenberg ES. Clinical management of acute HIV infection: best practice remains unknown. J Infect Dis. 2010;202 Suppl 2:S278–88.

    PubMed  Google Scholar 

  477. Moir S, Buckner CM, Ho J, et al. B cells in early and chronic HIV infection: evidence for preservation of immune function associated with early initiation of antiretroviral therapy. Blood. 2010;116:5571–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  478. Chun TW, Justement JS, Moir S, et al. Decay of the HIV reservoir in patients receiving antiretroviral therapy for extended periods: implications for eradication of virus. J Infect Dis. 2007;195:1762–4.

    PubMed  CAS  Google Scholar 

  479. Lang W, Anderson RE, Perkins H, et al. Clinical, immunologic, and serologic findings in men at risk for acquired immunodeficiency syndrome. The San Francisco Men’s Health Study. JAMA. 1987;257:326–30.

    PubMed  CAS  Google Scholar 

  480. Mathur-Wagh U, Enlow RW, Spigland I, et al. Longitudinal study of persistent generalised lymphadenopathy in homosexual men: relation to acquired immunodeficiency syndrome. Lancet. 1984;1:1033–8.

    PubMed  CAS  Google Scholar 

  481. el-Sadr W, Marmor M, Zolla-Pazner S, et al. Four-year prospective study of homosexual men: correlation of immunologic abnormalities, clinical status, and serology to human immunodeficiency virus. J Infect Dis. 1987;155:789–93.

    PubMed  CAS  Google Scholar 

  482. Buchbinder SP, Katz MH, Hessol NA, O’Malley PM, Holmberg SD. Long-term HIV-1 infection without immunologic progression. AIDS. 1994;8:1123–8.

    PubMed  CAS  Google Scholar 

  483. Whitmire JK. Induction and function of virus-specific CD4+ T cell responses. Virology. 2011;411:216–28.

    PubMed  CAS  PubMed Central  Google Scholar 

  484. Centers for Disease Control. Tuberculosis – United States, 1985 – and the possible impact of human T-lymphotropic virus type III/lymphadenopathy-associated virus infection. MMWR Morb Mortal Wkly Rep. 1986;35:74–6.

    Google Scholar 

  485. Horsburgh Jr CR. Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. N Engl J Med. 1991;324:1332–8.

    PubMed  Google Scholar 

  486. Allen S, Batungwanayo J, Kerlikowske K, et al. Two-year incidence of tuberculosis in cohorts of HIV-infected and uninfected urban Rwandan women. Am Rev Respir Dis. 1992;146:1439–44.

    PubMed  CAS  Google Scholar 

  487. de Armas Rodriguez Y, Wissmann G, Muller AL, et al. Pneumocystis jirovecii pneumonia in developing countries. Parasite. 2011;18:219–28.

    PubMed  PubMed Central  Google Scholar 

  488. Minamoto G, Armstrong D. Fungal infections in AIDS. Histoplasmosis and coccidioidomycosis. Infect Dis Clin North Am. 1988;2:447–56.

    PubMed  CAS  Google Scholar 

  489. Ustianowski AP, Sieu TP, Day JN. Penicillium marneffei infection in HIV. Curr Opin Infect Dis. 2008;21:31–6.

    PubMed  Google Scholar 

  490. Benard G, Duarte AJ. Paracoccidioidomycosis: a model for evaluation of the effects of human immunodeficiency virus infection on the natural history of endemic tropical diseases. Clin Infect Dis. 2000;31:1032–9.

    PubMed  CAS  Google Scholar 

  491. Moore RD, Chaisson RE. Natural history of HIV infection in the era of combination antiretroviral therapy. AIDS. 1999;13:1933–42.

    PubMed  CAS  Google Scholar 

  492. Palella Jr FJ, Baker RK, Moorman AC, et al. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr. 2006;43:27–34.

    PubMed  CAS  Google Scholar 

  493. Vittinghoff E, Scheer S, O’Malley P, Colfax G, Holmberg SD, Buchbinder SP. Combination antiretroviral therapy and recent declines in AIDS incidence and mortality. J Infect Dis. 1999;179:717–20.

    PubMed  CAS  Google Scholar 

  494. Palella Jr FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338:853–60.

    PubMed  Google Scholar 

  495. Rabkin CS, Goedert JJ. Risk of non-Hodgkin lymphoma and Kaposi’s sarcoma in homosexual men. Lancet. 1990;336:248–9.

    PubMed  CAS  Google Scholar 

  496. Rabkin CS, Hilgartner MW, Hedberg KW, et al. Incidence of lymphomas and other cancers in HIV-infected and HIV-uninfected patients with hemophilia. JAMA. 1992;267:1090–4.

    PubMed  CAS  Google Scholar 

  497. Beral V, Peterman T, Berkelman R, Jaffe H. AIDS-associated non-Hodgkin lymphoma. Lancet. 1991;337:805–9.

    PubMed  CAS  Google Scholar 

  498. Rabkin CS, Blattner WA. HIV infection and cancers other than non-Hodgkin lymphoma and Kaposi’s sarcoma. Cancer Surv. 1991;10:151–60.

    PubMed  CAS  Google Scholar 

  499. Shiramizu B, Herndier BG, McGrath MS. Identification of a common clonal human immunodeficiency virus integration site in human immunodeficiency virus-associated lymphomas. Cancer Res. 1994;54:2069–72.

    PubMed  CAS  Google Scholar 

  500. Dubrow R, Silverberg MJ, Park LS, Crothers K, Justice AC. HIV infection, aging, and immune function: implications for cancer risk and prevention. Curr Opin Oncol. 2012;24:506–16.

    PubMed  CAS  PubMed Central  Google Scholar 

  501. Bedimo RJ, McGinnis KA, Dunlap M, Rodriguez-Barradas MC, Justice AC. Incidence of non-AIDS-defining malignancies in HIV-infected versus noninfected patients in the HAART era: impact of immunosuppression. J Acquir Immune Defic Syndr. 2009;52:203–8.

    PubMed  PubMed Central  Google Scholar 

  502. Engels EA, Biggar RJ, Hall HI, et al. Cancer risk in people infected with human immunodeficiency virus in the United States. Int J Cancer. 2008;123:187–94.

    PubMed  CAS  Google Scholar 

  503. Simard EP, Pfeiffer RM, Engels EA. Spectrum of cancer risk late after AIDS onset in the United States. Arch Intern Med. 2010;170:1337–45.

    PubMed  PubMed Central  Google Scholar 

  504. Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol. 2008;214:231–41.

    PubMed  CAS  Google Scholar 

  505. Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011;62:141–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  506. Desai S, Landay A. Early immune senescence in HIV disease. Curr HIV/AIDS Rep. 2010;7:4–10.

    PubMed  PubMed Central  Google Scholar 

  507. Deeks SG, Walker BD. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity. 2007;27:406–16.

    PubMed  CAS  Google Scholar 

  508. Lyles RH, Munoz A, Yamashita TE, et al. Natural history of human immunodeficiency virus type 1 viremia after seroconversion and proximal to AIDS in a large cohort of homosexual men. Multicenter AIDS Cohort Study. J Infect Dis. 2000;181:872–80.

    PubMed  CAS  Google Scholar 

  509. Sauce D, Larsen M, Fastenackels S, et al. HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis. Blood. 2011;117:5142–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  510. Hunt PW, Brenchley J, Sinclair E, et al. Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J Infect Dis. 2008;197:126–33.

    PubMed  PubMed Central  Google Scholar 

  511. Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC. Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med. 1995;332:228–32.

    PubMed  CAS  Google Scholar 

  512. Learmont J, Tindall B, Evans L, et al. Long-term symptomless HIV-1 infection in recipients of blood products from a single donor. Lancet. 1992;340:863–7.

    PubMed  CAS  Google Scholar 

  513. Learmont JC, Geczy AF, Mills J, et al. Immunologic and virologic status after 14 to 18 years of infection with an attenuated strain of HIV-1. A report from the Sydney Blood Bank Cohort. N Engl J Med. 1999;340:1715–22.

    PubMed  CAS  Google Scholar 

  514. Chakrabarti LA, Simon V. Immune mechanisms of HIV control. Curr Opin Immunol. 2010;22:488–96.

    PubMed  CAS  PubMed Central  Google Scholar 

  515. Betts MR, Nason MC, West SM, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 2006;107:4781–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  516. Hersperger AR, Pereyra F, Nason M, et al. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog. 2010;6:e1000917.

    PubMed  PubMed Central  Google Scholar 

  517. Migueles SA, Laborico AC, Shupert WL, et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol. 2002;3:1061–8.

    PubMed  CAS  Google Scholar 

  518. Kiepiela P, Ngumbela K, Thobakgale C, et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med. 2007;13:46–53.

    PubMed  CAS  Google Scholar 

  519. Le Guenno BM, Barabe P, Griffet PA, et al. HIV-2 and HIV-1 AIDS cases in Senegal: clinical patterns and immunological perturbations. J Acquir Immune Defic Syndr. 1991;4:421–7.

    PubMed  Google Scholar 

  520. Naucler A, Andreasson PA, Costa CM, Thorstensson R, Biberfeld G. HIV-2-associated AIDS and HIV-2 seroprevalence in Bissau, Guinea-Bissau. J Acquir Immune Defic Syndr. 1989;2:88–93.

    PubMed  CAS  Google Scholar 

  521. Odehouri K, De Cock KM, Krebs JW, et al. HIV-1 and HIV-2 infection associated with AIDS in Abidjan, Cote d’Ivoire. AIDS. 1989;3:509–12.

    PubMed  CAS  Google Scholar 

  522. Hütter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360:692–8.

    PubMed  Google Scholar 

  523. Surosky RT, Giedlin MA, Nichol G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:901–10. http://www.niaid.nih.gov/topics/hivaids/research/cure/Pages/default.aspx

  524. Persaud D, Gay H, Ziemniak C, et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N Engl J Med. 2013;369:1828–35.

    PubMed  CAS  PubMed Central  Google Scholar 

  525. National Institute of Allergy and Infectious Diseases. Goals of NIAID HIV Cure Research http://www.niaid.nih.gov/topics/hivaids/research/cure/Pages/default.aspx. Accessed 2014 April 24.]

    Google Scholar 

  526. Wodak A, Maher L. The effectiveness of harm reduction in preventing HIV among injecting drug users. N S W Public Health Bull. 2010;21:69–73.http://www.who.int/injection_safety/sign/en/

  527. Wodak A, Cooney A. Do needle syringe programs reduce HIV infection among injecting drug users: a comprehensive review of the international evidence. Subst Use Misuse. 2006;41:777–813.http://www.jsi.com/JSIInternet/IntlHealth/project/display.cfm?ctid=na&cid=na&tid=40&id=375

  528. The Safe Injection Global Network (SIGN). http://www.who.int/injection_safety/sign/en/. Accessed 10 Feb 2013.

  529. Making Medical Injections Safer. http://www.jsi.com/JSIInternet/IntlHealth/project/display.cfm?ctid=na&cid=na&tid=40&id=375. Accessed 23 Aug 2013.

  530. Weller SC, Davis-Beaty K. Condom effectiveness in reducing heterosexual HIV transmission. Cochrane Database Syst Rev 2001;(3):CD003255.

    Google Scholar 

  531. Holtgrave D, McGuire J. Impact of counseling in voluntary counseling and testing programs for persons at risk for or living with HIV infection. Clin Infect Dis. 2007;45 Suppl 4:S240–3.

    PubMed  Google Scholar 

  532. Weinhardt LS, Carey MP, Johnson BT, Bickham NL. Effects of HIV counseling and testing on sexual risk behavior: a meta-analytic review of published research, 1985–1997. Am J Public Health. 1999;89:1397–405.

    PubMed  CAS  PubMed Central  Google Scholar 

  533. Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, Puren A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med. 2005;2:e298.

    PubMed  PubMed Central  Google Scholar 

  534. Bailey RC, Moses S, Parker CB, et al. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet. 2007;369:643–56.

    PubMed  Google Scholar 

  535. Gray RH, Kigozi G, Serwadda D, et al. Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet. 2007;369:657–66.

    PubMed  Google Scholar 

  536. Gray R, Kigozi G, Kong X, et al. The effectiveness of male circumcision for HIV prevention and effects on risk behaviors in a posttrial follow-up study. AIDS. 2012;26:609–15.

    PubMed  Google Scholar 

  537. Read JS. Prevention of mother-to-child transmission of HIV: antiretroviral strategies. Clin Perinatol. 2010;37:765–76.

    PubMed  Google Scholar 

  538. Fowler MG, Gable AR, Lampe MA, Etima M, Owor M. Perinatal HIV and its prevention: progress toward an HIV-free generation. Clin Perinatol. 2010;37:699–719, vii.

    PubMed  Google Scholar 

  539. Joint United Nations Programme on HIV/AIDS (UNAIDS). Scaling up priority HIV/AIDS interventions in the health sector: Progress report 2010. Geneva; 2010.

    Google Scholar 

  540. Joint United Nations Programme on HIV/AIDS (UNAIDS). 2013 progress report on the global plan. Geneva; 2013.

    Google Scholar 

  541. Chi BH, Adler MR, Bolu O, et al. Progress, challenges, and new opportunities for the prevention of mother-to-child transmission of HIV under the US President’s Emergency Plan for AIDS Relief. J Acquir Immune Defic Syndr. 2012;60 Suppl 3:S78–87.

    PubMed  Google Scholar 

  542. Donnell D, Baeten JM, Kiarie J, et al. Heterosexual HIV-1 transmission after initiation of antiretroviral therapy: a prospective cohort analysis. Lancet. 2010;375:2092–8.

    PubMed  PubMed Central  Google Scholar 

  543. Cohen MS, Chen YQ, McCauley M, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365:493–505.

    PubMed  CAS  PubMed Central  Google Scholar 

  544. Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG. Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet. 2009;373:48–57.

    PubMed  Google Scholar 

  545. Cremin I, Alsallaq R, Dybul M, Piot P, Garnett G, Hallett TB. The new role of antiretrovirals in combination HIV prevention: a mathematical modelling analysis. AIDS. 2013;27:447–58.

    PubMed  Google Scholar 

  546. Tanser F, Barnighausen T, Grapsa E, Zaidi J, Newell ML. High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science. 2013;339:966–71.

    PubMed  CAS  Google Scholar 

  547. Das M, Chu PL, Santos GM, et al. Decreases in community viral load are accompanied by reductions in new HIV infections in San Francisco. PLoS ONE. 2010;5:e11068. doi:10.1371/journal.pone.0011068.

    PubMed  PubMed Central  Google Scholar 

  548. Montaner JS, Lima VD, Harrigan PR, et al. Expansion of HAART coverage is associated with sustained decreases in HIV/AIDS morbidity, mortality and HIV transmission: the ”HIV treatment as prevention” experience in a Canadian setting. PLoS One. 2014;9:e87872. doi:10.1371/journal.pone.0087872.

    PubMed  PubMed Central  Google Scholar 

  549. Cohen MS, Smith MK, Muessig KE, Hallett TB, Powers KA, Kashuba AD. Antiretroviral treatment of HIV-1 prevents transmission of HIV-1: where do we go from here? Lancet. 2013;382:1515–24.

    PubMed  CAS  Google Scholar 

  550. Abdool Karim Q, Abdool Karim SS, Frohlich JA, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329:1168–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  551. Grant RM, Lama JR, Anderson PL, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med. 2010;363:2587–99.

    PubMed  CAS  PubMed Central  Google Scholar 

  552. Thigpen MC, Kebaabetswe PM, Paxton LA, et al. Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. N Engl J Med. 2012;367:423–34.

    PubMed  CAS  Google Scholar 

  553. Van Damme L, Corneli A, Ahmed K, et al. Preexposure prophylaxis for HIV infection among African women. N Engl J Med. 2012;367:411–22.

    PubMed  PubMed Central  Google Scholar 

  554. Baeten JM, Donnell D, Ndase P, et al. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med. 2012;367:399–410.

    PubMed  CAS  PubMed Central  Google Scholar 

  555. Marrazzo J, Ramjee G, Nair G, et al. Pre-exposure prophylaxis for HIV in women: daily oral tenofovir, oral tenofovir/emtricitabine, or vaginal tenofovir gel in the VOICE Study (MTN 003). In: 20th conference on retroviruses and opportunistic infections. Atlanta; 2013.

    Google Scholar 

  556. Centers for Disease Control and Prevention. Update to Interim Guidance for Preexposure Prophylaxis (PrEP) for the prevention of HIV infection: PrEP for injecting drug users. MMWR Morb Mortal Wkly Rep. 2013;62:463–5.

    Google Scholar 

  557. Karris MY, Beekmann SE, Mehta SR, Anderson CM, Polgreen PM. Are we prepped for preexposure prophylaxis (PrEP)? Provider opinions on the real-world use of PrEP in the United States and Canada. Clin Infect Dis. 2014;58:704–12.

    PubMed  CAS  Google Scholar 

  558. The White House. National HIV/AIDS strategy for the United States. Washington, DC; 2010.

    Google Scholar 

  559. Gallo RC. A reflection on HIV/AIDS research after 25 years. Retrovirology. 2006;3:72.

    Google Scholar 

  560. Markel H. The search for effective HIV vaccines. N Engl J Med. 2005;353:753–7.

    PubMed  CAS  Google Scholar 

  561. McKinnon LR, Card CM. HIV vaccine efficacy trials: a brief history, and options for going forward. AIDS Rev. 2010;12:209–17.

    PubMed  Google Scholar 

  562. Kwong PD, Mascola JR, Nabel GJ. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol. 2013;13:693–701.

    PubMed  CAS  Google Scholar 

  563. Thakur A, Pedersen LE, Jungersen G. Immune markers and correlates of protection for vaccine induced immune responses. Vaccine. 2012;30:4907–20.

    PubMed  CAS  Google Scholar 

  564. Dowdle WR, Coleman MT, Mostow SR, Kaye HS, Schoenbaum SC. Inactivated influenza vaccines. 2. Laboratory indices of protection. Postgrad Med J. 1973;49:159–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  565. Jack AD, Hall AJ, Maine N, Mendy M, Whittle HC. What level of hepatitis B antibody is protective? J Infect Dis. 1999;179:489–92.

    PubMed  CAS  Google Scholar 

  566. Nalin DR, Kuter BJ, Brown L, et al. Worldwide experience with the CR326F-derived inactivated hepatitis A virus vaccine in pediatric and adult populations: an overview. J Hepatol. 1993;18 Suppl 2:S51–5.

    PubMed  Google Scholar 

  567. Plotkin S, Vidor E. Poliovirus vaccine-inactivated. In: Plotkin S, Orenstein W, Offit W, editors. Vaccine. 5th ed. Philadelphia: Elsevier-Saunders; 2008. p. 605–30.

    Google Scholar 

  568. Weibel RE, Buynak EB, McLean AA, Hilleman MR. Long-term follow-up for immunity after monovalent or combined live measles, mumps, and rubella virus vaccines. Pediatrics. 1975;56:380–7.

    PubMed  CAS  Google Scholar 

  569. Karzon DT, Bolognesi DP, Koff WC. Development of a vaccine for the prevention of AIDS, a critical appraisal. Vaccine. 1992;10:1039–52.

    PubMed  CAS  Google Scholar 

  570. Karwowska S, Zolla-Pazner S. Passive immunization for the treatment and prevention of HIV infection. Biotechnol Ther. 1991;2:31–48.

    PubMed  CAS  Google Scholar 

  571. Korber B, Gnanakaran S. The implications of patterns in HIV diversity for neutralizing antibody induction and susceptibility. Curr Opin HIV AIDS. 2009;4:408–17.

    PubMed  Google Scholar 

  572. Gaschen B, Taylor J, Yusim K, et al. Diversity considerations in HIV-1 vaccine selection. Science. 2002;296:2354–60.

    PubMed  CAS  Google Scholar 

  573. Barnett SW, Klinger JM, Doe B, et al. Prime-boost immunization strategies against HIV. AIDS Res Hum Retroviruses. 1998;14 Suppl 3:S299–309.

    PubMed  CAS  Google Scholar 

  574. Berman PW, Huang W, Riddle L, et al. Development of bivalent (B/E) vaccines able to neutralize CCR5-dependent viruses from the United States and Thailand. Virology. 1999;265:1–9.

    PubMed  CAS  Google Scholar 

  575. Flynn NM, Forthal DN, Harro CD, Judson FN, Mayer KH, Para MF. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis. 2005;191:654–65.

    PubMed  Google Scholar 

  576. Pitisuttithum P, Gilbert P, Gurwith M, et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J Infect Dis. 2006;194:1661–71.

    PubMed  CAS  Google Scholar 

  577. Goepfert PA, Tomaras GD, Horton H, et al. Durable HIV-1 antibody and T-cell responses elicited by an adjuvanted multi-protein recombinant vaccine in uninfected human volunteers. Vaccine. 2007;25:510–8.

    PubMed  CAS  Google Scholar 

  578. Beddows S, Lister S, Cheingsong R, Bruck C, Weber J. Comparison of the antibody repertoire generated in healthy volunteers following immunization with a monomeric recombinant gp120 construct derived from a CCR5/CXCR4-using human immunodeficiency virus type 1 isolate with sera from naturally infected individuals. J Virol. 1999;73:1740–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  579. Bures R, Gaitan A, Zhu T, et al. Immunization with recombinant canarypox vectors expressing membrane-anchored glycoprotein 120 followed by glycoprotein 160 boosting fails to generate antibodies that neutralize R5 primary isolates of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses. 2000;16:2019–35.

    PubMed  CAS  Google Scholar 

  580. Moore JP, Cao Y, Qing L, et al. Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. J Virol. 1995;69:101–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  581. Letvin NL. Strategies for an HIV vaccine. J Clin Invest. 2002;110:15–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  582. Pamer E, Cresswell P. Mechanisms of MHC class I–restricted antigen processing. Annu Rev Immunol. 1998;16:323–58.

    PubMed  CAS  Google Scholar 

  583. Shiver JW, Emini EA. Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Annu Rev Med. 2004;55:355–72.

    PubMed  CAS  Google Scholar 

  584. Shiver JW, Fu TM, Chen L, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature. 2002;415:331–5.

    PubMed  CAS  Google Scholar 

  585. Buchbinder SP, Mehrotra DV, Duerr A, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet. 2008;372:1881–93.

    PubMed  CAS  PubMed Central  Google Scholar 

  586. Gray GE, Allen M, Moodie Z, et al. Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1 vaccine in South Africa: a double-blind, randomised, placebo-controlled test-of-concept phase 2b study. Lancet Infect Dis. 2011;11:507–15.

    PubMed  CAS  PubMed Central  Google Scholar 

  587. Hammer SM, Sobieszczyk ME, Janes H, et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med. 2013;369:2083–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  588. Karnasuta C, Paris RM, Cox JH, et al. Antibody-dependent cell-mediated cytotoxic responses in participants enrolled in a phase I/II ALVAC-HIV/AIDSVAX B/E prime-boost HIV-1 vaccine trial in Thailand. Vaccine. 2005;23:2522–9.

    PubMed  CAS  Google Scholar 

  589. Nitayaphan S, Pitisuttithum P, Karnasuta C, et al. Safety and immunogenicity of an HIV subtype B and E prime-boost vaccine combination in HIV-negative Thai adults. J Infect Dis. 2004;190:702–6.

    PubMed  CAS  Google Scholar 

  590. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009;361:2209–20.

    PubMed  CAS  Google Scholar 

  591. Haynes BF, Gilbert PB, McElrath MJ, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med. 2012;366:1275–86.

    PubMed  CAS  PubMed Central  Google Scholar 

  592. Piot P, Quinn TC. Response to the AIDS pandemic–a global health model. N Engl J Med. 2013;368:2210–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  593. National Institutes of Health. Federally approved HIV/AIDS medical practice guidelines. At http://aidsinfo.nih.gov/guidelines. Accessed 2014 May 1

    Google Scholar 

  594. Lohse N, Hansen A-BE, Pedersen G, et al. Survival of persons with and without HIV infection in Denmark, 1995–2005. Ann Intern Med. 2007;146(2):87–95.

    PubMed  Google Scholar 

  595. Kaplan J, Benson C, Holmes K, Brooks J, Pau A, Masur H. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents. MMWR Morb Mortal Wkly Rep. 2009;58:1–198.

    Google Scholar 

  596. Deeks SG, Kitchen CM, Liu L, et al. Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood. 2004;104:942–7.

    PubMed  CAS  Google Scholar 

  597. Liu Z, Cumberland WG, Hultin LE, Kaplan AH, Detels R, Giorgi JV. CD8+ T-lymphocyte activation in HIV-1 disease reflects an aspect of pathogenesis distinct from viral burden and immunodeficiency. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;18:332–40.

    PubMed  CAS  Google Scholar 

  598. Sousa AE, Carneiro J, Meier-Schellersheim M, Grossman Z, Victorino RM. CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J Immunol. 2002;169:3400–6.

    PubMed  CAS  Google Scholar 

  599. Blackard JT, Sherman KE. HCV/HIV co-infection: time to re-evaluate the role of HIV in the liver? J Viral Hepat. 2008;15:323–30.http://www.cste.org/ps/2004pdf/04-Id-07-final.pdf

  600. Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359:727–32.

    PubMed  CAS  Google Scholar 

  601. Alfirevic A, Park BK, Pirmohamed M, Naisbitt DJ. Explanation for HLA-B*57:01-linked immune-mediated abacavir-induced hypersensitivity. Pharmacogenomics. 2012;13:1567–9.http://www.cdc.gov/hiv/pdf/statistics_surveillance_aidstrends.pdf

  602. Martin-Blondel G, Mars LT, Liblau RS. Pathogenesis of the immune reconstitution inflammatory syndrome in HIV-infected patients. Curr Opin Infect Dis. 2012;25:312–20.

    PubMed  CAS  Google Scholar 

  603. Lake JE, Currier JS. Metabolic disease in HIV infection. Lancet Infect Dis. 2013;13:964–75.

    PubMed  Google Scholar 

  604. Post WS, Budoff M, Kingsley L, et al. Associations Between HIV Infection and Subclinical Coronary Atherosclerosis. Ann Intern Med. 2014;160(7):458–67.

    PubMed  Google Scholar 

  605. Witvrouw M, Pannecouque C, Switzer WM, Folks TM, De Clercq E, Heneine W. Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: implications for treatment and postexposure prophylaxis. Antivir Ther. 2004;9:57–65.

    PubMed  CAS  Google Scholar 

  606. Ntemgwa ML, d’Aquin Toni T, Brenner BG, Camacho RJ, Wainberg MA. Antiretroviral drug resistance in human immunodeficiency virus type 2. Antimicrob Agents Chemother. 2009;53:3611–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  607. Ruelle J, Roman F, Vandenbroucke AT, et al. Transmitted drug resistance, selection of resistance mutations and moderate antiretroviral efficacy in HIV-2: analysis of the HIV-2 Belgium and Luxembourg database. BMC Infect Dis. 2008;8:21.

    PubMed  PubMed Central  Google Scholar 

  608. Ruelle J, Sanou M, Liu HF, Vandenbroucke AT, Duquenne A, Goubau P. Genetic polymorphisms and resistance mutations of HIV type 2 in antiretroviral-naive patients in Burkina Faso. AIDS Res Hum Retroviruses. 2007;23:955–64.

    PubMed  CAS  Google Scholar 

  609. Brower ET, Bacha UM, Kawasaki Y, Freire E. Inhibition of HIV-2 protease by HIV-1 protease inhibitors in clinical use. Chem Biol Drug Des. 2008;71:298–305.

    PubMed  CAS  Google Scholar 

  610. Desbois D, Roquebert B, Peytavin G, et al. In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors. Antimicrob Agents Chemother. 2008;52:1545–8.

    PubMed  CAS  PubMed Central  Google Scholar 

Suggested Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Kaslow MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaslow, R.A., Erbelding, E.J., Goepfert, P.A. (2014). Human Immunodeficiency Viruses Types 1 and 2. In: Kaslow, R., Stanberry, L., Le Duc, J. (eds) Viral Infections of Humans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7448-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7448-8_43

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7447-1

  • Online ISBN: 978-1-4899-7448-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics