Skip to main content

Epstein-Barr Virus: Nasopharyngeal Carcinoma and Other Epithelial Tumors

  • Chapter
  • First Online:
  • 4704 Accesses

Abstract

Since its discovery over 45 years ago, Epstein-Barr virus (EBV) has been associated with numerous human carcinomas. Approximately 95 % of the world’s population sustain an asymptomatic lifelong infection with EBV. The virus persists in the memory B cell pool of normal healthy individuals and any disruption of this interaction results in virus-associated B cell tumors. The association of EBV with epithelial cell tumors, specifically nasopharyngeal carcinoma (NPC) and EBV-positive gastric carcinoma (EBV-GC), is less clear and is currently thought to be a consequence of the aberrant establishment of virus latency in epithelial cells displaying premalignant genetic changes. Although the precise role of EBV in the carcinogenic process is currently poorly understood, the presence of the virus in all tumor cells provides opportunities for the development of novel therapeutic and diagnostic approaches. The study of EBV and its role in carcinomas continues to provide insights into the carcinogenic process that are relevant to a broader understanding of tumor pathogenesis and to the development of targeted cancer therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. de Martel C, Ferlay J, Franceschi S, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13:607–15.

    Article  PubMed  Google Scholar 

  2. Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–68.

    Article  PubMed  CAS  Google Scholar 

  3. Tao Q, Young LS, Woodman CB, Murray PG. Epstein-Barr vírus (EBV) and its associated human cancers – genetics, epigenetics, pathobiology and novel therapeutics. Front Biosci. 2006;11:2672–713.

    Article  PubMed  CAS  Google Scholar 

  4. Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol. 2001;1:75–82.

    Article  PubMed  CAS  Google Scholar 

  5. Rickinson AB, Kieff E. Epstein-Barr virus. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia: Lippincott Williams and Wilkins; 2001. p. 2575–627.

    Google Scholar 

  6. Old LJ, Boyse EA, Oettgen E, et al. Precipitating antibody in human serum to an antigen present in cultured Burkitt’s lymphoma cells. Proc Natl Acad Sci U S A. 1966;56:1699–704.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. de Schryver A, Friberg S, Klein G, et al. Epstein-Barr virus-associated antibody patterns in carcinoma of the post-nasal space. Clin Exp Immunol. 1969;5:443–59.

    PubMed  PubMed Central  Google Scholar 

  8. zur Hausen H, Schulte-Holthausen H, Klein G, et al. EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature. 1970;228:1056–8.

    Article  PubMed  CAS  Google Scholar 

  9. Henle W, Henle G, Ho HC, et al. Antibodies to Epstein-Barr virus in nasopharyngeal carcinoma, other head and neck neoplasms, and control groups. J Natl Cancer Inst. 1970;44:225–31.

    PubMed  CAS  Google Scholar 

  10. Henle W, Ho JHC, Henle G, Chau JCW, Kwan HC. Nasopharyngeal carcinoma: significance of changes in Epstein-Barr virus-related antibody patterns following therapy. Int J Cancer. 1977;20:663–72.

    Article  PubMed  CAS  Google Scholar 

  11. Wolf H, zur Hausen H, Becker V. EB-viral genomes in epithelial nasopharyngeal carcinoma cells. Nat New Biol. 1973;244:245–7.

    Article  PubMed  CAS  Google Scholar 

  12. Zeng Y, Zhang LG, Wu YC, et al. Prospective studies on nasopharyngeal carcinoma in Epstein-Barr vírus IgA/VCA antibody-positive persons in Wuzhou City, China. Int J Cancer. 1985;36:545–7.

    Article  PubMed  CAS  Google Scholar 

  13. Raab-Traub N, Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell. 1986;47:883–9.

    Article  PubMed  CAS  Google Scholar 

  14. Pathmanathan R, Prasad U, Chandrika G, Sadler R, Flynn K, Raab-Traub N. Undifferentiated, nonkeratinizing, and squamous cell carcinoma of the nasopharynx. Variants of Epstein-Barr virus neoplasia. Am J Pathol. 1995;146:1355–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Wei K, Xu Y, Liu J, Zhang W, Liang Z. Histopathological classification of nasopharyngeal carcinoma. Asian Pac J Cancer Prev. 2011;12:1141–7.

    PubMed  Google Scholar 

  16. Ji X, Zhang W, Xie C, Wang B, Zhang G, Zhou F. Nasopharyngeal carcinoma risk by histologic type in central China: impact of smoking, alcohol and family history. Int J Cancer. 2011;129:724–32.

    Article  PubMed  CAS  Google Scholar 

  17. Shibata D, Tokunaga M, Uemura Y, Sato E, Tanaka S, Weiss L. Association of Epstein-Barr virus with undifferentiated gastric carcinomas with intense lymphoid infiltration. Lymphoepithelioma-like carcinoma. Am J Pathol. 1991;139:469–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Fujii T, Kawai T, Saito K, et al. EBER-1 expression in thymic carcinoma. Acta Pathol Jpn. 1993;43:107–10.

    PubMed  CAS  Google Scholar 

  19. Raab-Traub N, Rajadurai P, Flynn K, Lanier AP. Epstein-Barr virus infection in carcinoma of the salivary gland. J Virol. 1991;65:7032–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Weinberg E, Hoisington S, Eastman AY, Rice DK, Malfetano J, Ross JS. Uterine cervical lymphoepithelial-like carcinoma. Absence of Epstein-Barr virus genomes. Am J Clin Pathol. 1993;99:195–9.

    PubMed  CAS  Google Scholar 

  21. Dadmanesh F, Peterse JL, Sapino A, Fonelli A, Eusebi V. Lymphoepithelioma-like carcinoma of the breast: lack of evidence of Epstein-Barr virus infection. Histopathology. 2001;38:54–61.

    Article  PubMed  CAS  Google Scholar 

  22. Kelly G, Bell A, Rickinson AB. Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA1. Nat Med. 2002;8:1098–104.

    Article  PubMed  CAS  Google Scholar 

  23. Brooks L, Yao QY, Rickinson AB, Young LS. Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol. 1992;66:2689–97.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Deacon EM, Pallesen G, Niedobitek G, et al. Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med. 1993;177:339–49.

    Article  PubMed  CAS  Google Scholar 

  25. Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet. 1991;337:320–2.

    Article  PubMed  CAS  Google Scholar 

  26. Young LS, Dawson CW, Clark D, et al. Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol. 1988;69:1051–65.

    Article  PubMed  CAS  Google Scholar 

  27. Speck SH, Strominger JL. Transcription of Epstein-Barr virus in latently infected, growth-transformed lymphocytes. In: Klein G, editor. Advances in viral oncology. New York: Raven Press; 1989. p. 133–50.

    Google Scholar 

  28. Moody CA, Scott RS, Su T, Sixbey JW. Length of Epstein-Barr virus termini as a determinant of epithelial cell clonal emergence. J Virol. 2003;77:8555–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Tempera I, Klichinsky M, Lieberman PM. EBV latency types adopt alternative chromatin conformations. PLoS Pathog. 2011;7:e1002180.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Chen H, Lee JM, Zong Y, et al. Linkage between STAT regulation and Epstein-Barr virus gene expression. J Virol. 2001;75:2929–37.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Levitskaya J, Coram M, Levitsky V, et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature. 1995;375:685–8.

    Article  PubMed  CAS  Google Scholar 

  32. Frappier L. Role of EBNA1 in NPC tumourigenesis. Semin Cancer Biol. 2012;22:154–61.

    Article  PubMed  CAS  Google Scholar 

  33. Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalised lymphocytes transforms established rodent cells. Cell. 1985;43:831–40.

    Article  PubMed  CAS  Google Scholar 

  34. Kaye KM, Izumi KM, Kieff E. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A. 1993;90:9150–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Dawson CW, Port RJ, Young LS. The role of EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma. Semin Cancer Biol. 2012;22:144–53.

    Article  PubMed  CAS  Google Scholar 

  36. Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell. 1995;80:389–99.

    Article  PubMed  CAS  Google Scholar 

  37. Uchida J, Yasui T, Takaoka-Shichijo Y, et al. Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science. 1999;286:300–3.

    Article  PubMed  CAS  Google Scholar 

  38. Eliopoulos AG, Gallagher NJ, Blake SM, Dawson CW, Young LS. Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem. 1999;274:16085–96.

    Article  PubMed  CAS  Google Scholar 

  39. Kieser A, Kilger E, Gires O, Ueffing M, Kolch W, Hammerschmidt W. Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J. 1997;16:6478–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Eliopoulos AG, Young LS. Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene. 1998;16:1731–42.

    Article  PubMed  CAS  Google Scholar 

  41. Gires O, Kohlhuber F, Kilger E, et al. Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J. 1999;18:3064–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Eliopoulos AG, Young LS. LMP1 structure and signal transduction. Semin Cancer Biol. 2001;11:435–44.

    Article  PubMed  CAS  Google Scholar 

  43. Dawson CW, Tramountanis G, Eliopoulos AG, Young LS. Epstein-Barr virus latent membrane protein 1 (LMP1) activates the PI3-K/Akt pathway to promote cell survival and induce actin filament remodelling. J Biol Chem. 2003;2003:2783694–704.

    Google Scholar 

  44. Pathmanathan R, Prasad U, Sadler R, Flynn K, Raab-Traub N. Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med. 1995;333:693–8.

    Article  PubMed  CAS  Google Scholar 

  45. Khabir A, Karray H, Rodriguez S, et al. EBV latent membrane protein 1 abundance correlates with patient age but not with metastatic behavior in north African nasopharyngeal carcinomas. Virol J. 2005;2:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Fruehling S, Longnecker R. The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMPA2 is essential for blocking BCR-mediated signal transduction. J Virol. 1997;235:241–51.

    Article  CAS  Google Scholar 

  47. Miller CL, Burkhardt AL, Lee JH, et al. Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity. 1995;2:155–66.

    Article  PubMed  CAS  Google Scholar 

  48. Caldwell RG, Wilson JB, Anderson SJ, Longnecker R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998;9(3):405–11.

    Article  PubMed  CAS  Google Scholar 

  49. Rovedo M, Longnecker R. Epstein-Barr virus latent membrane protein 2B (LMP2B) modulates LMP2A activity. J Virol. 2007;81:84–94.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Dawson CW, George JH, Blake SM, Longnecker R, Young LS. The Epstein-Barr virus encoded latent membrane protein 2A augments signaling from latent membrane protein 1. Virology. 2001;289:192–207.

    Article  PubMed  CAS  Google Scholar 

  51. Lynch DT, Zimmerman JS, Rowe DT. Epstein-Barr virus latent membrane protein 2B (LMP2B) co-localizes with LMP2A in perinuclear regions in transiently transfected cells. J Gen Virol. 2002;83:1025–35.

    PubMed  CAS  Google Scholar 

  52. Tomaszewski-Flick MJ, Rowe DT. Minimal protein domain requirements for the intracellular localization and self-aggregation of Epstein-Barr virus latent membrane protein 2. Virus Genes. 2007;35:225–34.

    Article  PubMed  CAS  Google Scholar 

  53. Higuchi M, Izumi KM, Kieff E. Epstein-Barr virus latent-infection membrane proteins are palmitoylated and raft-associated: protein 1 binds to the cytoskeleton through TNF receptor cytoplasmic factors. Proc Natl Acad Sci U S A. 2001;98:4675–80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Scholle F, Bendt KM, Raab-Traub N. Epstein-Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J Virol. 2000;74:10681–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Morrison JA, Raab-Traub N. Roles of the ITAM and PY motifs of Epstein-Barr virus latent membrane protein 2A in the inhibition of epithelial cell differentiation and activation of b-catenin signaling. J Virol. 2005;79:2375–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Fukuda M, Longnecker R. Epstein-Barr virus latent membrane protein 2A mediates transformation through constitutive activation of the Ras/PI3-K/Akt Pathway. J Virol. 2007;81:9299–306.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Allen MD, Young LS, Dawson CW. The Epstein-Barr virus-encoded LMP2A and LMP2B proteins promote epithelial cell spreading and motility. J Virol. 2005;79:1789–802.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Lu J, Lin WH, Chen SY, et al. Syk tyrosine kinase mediates Epstein-Barr virus latent membrane protein 2A-induced cell migration in epithelial cells. J Biol Chem. 2006;281:8806–14.

    Article  PubMed  CAS  Google Scholar 

  59. Kong QL, Hu LJ, Cao JY, et al. Epstein-Barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma. PLoS Pathog. 2010;6:e1000940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Shah KM, Stewart SE, Wei W, et al. The EBV-encoded latent membrane proteins, LMP2A and LMP2B, limit the actions of interferon by targeting interferon receptors for degradation. Oncogene. 2009;28:3903–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Stewart S, Dawson CW, Takada K, et al. Epstein-Barr virus-encoded LMP2A regulates viral and cellular gene expression by modulation of the NF-κB transcription factor pathway. Proc Natl Acad Sci U S A. 2004;101:15730–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Busson P, McCoy R, Sadler R, Gilligan K, Tursz T, Raab-Traub N. Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J Virol. 1992;66:3257–62.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Heussinger N, Büttner M, Ott G, et al. (2004) Expression of the Epstein-Barr virus (EBV)-encoded latent membrane protein 2A (LMP2A) in EBV-associated nasopharyngeal carcinoma. J Pathol. 2004;203:696–9.

    Article  PubMed  CAS  Google Scholar 

  64. Paramita DK, Fatmawati C, Juwana H, et al. Humoral immune responses to Epstein-Barr virus encoded tumor associated proteins and their putative extracellular domains in nasopharyngeal carcinoma patients and regional controls. J Med Virol. 2011;4:665–78.

    Article  CAS  Google Scholar 

  65. Takada K. Role of EBER and BARF1 in nasopharyngeal carcinoma (NPC) tumorigenesis. Semin Cancer Biol. 2012;22:162–5.

    Article  PubMed  CAS  Google Scholar 

  66. Samanta M, Iwakiri D, Kanda T, Imaizumi T, Takada K. EB virus-encoded RNAs are recognised by RIG-1 and activate signalling to induce type I IFN. EMBO J. 2006;25:4207–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Iwakiri D, Sheen TS, Chen JY, Huang DP, Takada K. Epstein-Barr virus-encoded small RNA induces insulin-like growth factor 1 and supports growth of nasopharyngeal carcinoma-derived cell lines. Oncogene. 2005;24:1767–73.

    Article  PubMed  CAS  Google Scholar 

  68. Hitt MM, Allday MJ, Hara T, et al. EBV gene expression in an NPC-related tumour. EMBO J. 1989;8:2639–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Marquitz AR, Raab-Traub N. The role of miRNAs and EBV BARTS in NPC. Semin Cancer Biol. 2012;22:166–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Karran L, Gao Y, Smith PR, Griffin BE. Expression of a family of complementary-strand transcripts in Epstein-Barr virus-infected cells. Proc Natl Acad Sci U S A. 1992;89:8058–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Pfeffer S, Zavolan M, Grasser FA, et al. Identification of virus-encoded microRNAs. Science. 2004;304:734–6.

    Article  PubMed  CAS  Google Scholar 

  72. Lo AKF, Dawson CW, Jin DY, Lo KW. The pathological roles of BART miRNAs in nasopharyngeal carcinoma. J Pathol. 2012;227:392–403.

    Article  PubMed  CAS  Google Scholar 

  73. Wong AM, Kong KL, Tsang JW, Kwong DL, Guan XY. Profiling of Epstein-Barr virus-encoded microRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs. Cancer. 2012;118:698–710.

    Article  PubMed  CAS  Google Scholar 

  74. Chan JY, Gao W, Ho WK, Wei WI, Wong TS. Overexpression of Epstein-Barr virus-encoded microRNA-BART7 in undifferentiated nasopharyngeal carcinoma. Anticancer Res. 2012;32:3201–10.

    PubMed  Google Scholar 

  75. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A. 2010;107:6328–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Meckes DG, Shair KHY, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A. 2010;107:20370–5.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Decaussin G, Sbih-Lammali F, de Turenne-Tessier M, Bouguermouh A, Ooka T. Expression of BARF1 gene encoded by Epstein-Barr virus in nasopharyngeal carcinoma biopsies. Cancer Res. 2000;60:5584–8.

    PubMed  CAS  Google Scholar 

  78. zur Hausen A, Brink AA, Craanen ME, Middeldopr JM, Meijer CJ, van den Brile AJ. Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res. 2000;60:2745–8.

    PubMed  CAS  Google Scholar 

  79. Shim AHR, Chang RA, Chen X, Longnecker R, He X. Multipronged attenuation of macrophage-colony stimulating factor signaling by Epstein-Barr virus BARF1. Proc Natl Acad Sci U S A. 2012;109:12962–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Sheng W, Decaussin G, Sumner S, Ooka T. N-terminal domain of BARF1 gene encoded by Epstein-Barr virus is essential for malignant transformation of rodent fibroblasts and activation of BCL-2. Oncogene. 2001;20:1176–85.

    Article  PubMed  CAS  Google Scholar 

  81. Seto E, Ooka T, Middeldorp J, Takada K. Reconstruction of nasopharyngeal carcinoma-type infection induced tumorigenicity. Cancer Res. 2008;68:1030–6.

    Article  PubMed  CAS  Google Scholar 

  82. Houali K, Wang X, Shimizu Y, et al. A new diagnostic marker for secreted Epstein-Barr virus-encoded LMP1 and BARF1 oncoproteins in the serum and saliva of patients with nasopharyngeal carcinoma. Clin Cancer Res. 2007;13:4493–5000.

    Article  CAS  Google Scholar 

  83. Tzellos S, Farrell PJ. Epstein-Barr virus sequence variation – biology and disease. Pathogens. 2012;1:156–74.

    Article  CAS  Google Scholar 

  84. Sample J, Young L, Martin B, Chatman T, Kieff E, Rickinson A. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA- 3B, and EBNA-3C genes. J Virol. 1990;64:4084–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Rickinson AB, Young LS, Rowe M. Influence of the Epstein-Barr virus nuclear antigen EBNA2 on the growth phenotype of virus-transformed B cells. J Virol. 1987;61:1310–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Khanim F, Yao QY, Niedobitek G, Sihota S, Rickinosn AB, Young LS. Analysis of Epstein-Barr virus gene polymorphisms in normal donors and in virus-associated tumors from different geographic locations. Blood. 1996;88:3491–501.

    PubMed  CAS  Google Scholar 

  87. Tierney RJ, Edwards RH, Sitki-Green D, et al. Multiple Epstein-Barr virus strains in patients with infectious mononucleosis: comparison of ex vivo samples with in vitro isolates by use of heteroduplex tracking assays. J Infect Dis. 2006;193:287–97.

    Article  PubMed  CAS  Google Scholar 

  88. Midgley RS, Blake NW, Yao QY, et al. Novel intertypic recombinants of Epstein-Barr virus in the Chinese population. J Virol. 2000;74:1544–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Edwards RH, Seillier-Moiseiwitsch F, Raab-Traub N. Signature amino acid changes in latent membrane protein 1 distinguish Epstein-Barr virus strains. Virology. 1999;261:79–95.

    Article  PubMed  CAS  Google Scholar 

  90. Dawson CW, Eliopoulos AG, Blake SM, Barker R, Young LS. Identification of functional differences between prototype Epstein-Barr virus-encoded LMP1 and a nasopharyngeal carcinoma-derived LMP1 in human epithelial cells. Virology. 2000;272:204–17.

    Article  PubMed  CAS  Google Scholar 

  91. Fielding CA, Sandvej K, Mehl AM, Brennan P, Jones M, Rowe M. Epstein-Barr virus LMP-1 natural sequence variants differ in their potential to activate cellular signaling pathways. J Virol. 2001;75:9129–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Huang TR, Zhang SW, Chen WQ, et al. Trends in nasopharyngeal carcinoma mortality in China, 19732005. Asian Pac J Cancer Prev. 2012;13:2495–502.

    Article  PubMed  Google Scholar 

  93. Sun X, Tong LP, Wang YT, et al. Can global variation of nasopharynx cancer be retrieved from the combined analyses of IARC Cancer Information (CIN) databases? PLoS One. 2011;6:e22039.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Xie WC, Chan MH, Mak KC, Chan WT, He M. Trends in the incidence of 15 common cancers in Hong Kong, 1983–2008. Asian Pac J Cancer Prev. 2012;13:3911–6.

    Article  PubMed  Google Scholar 

  95. Sun LM, Epplein M, Li CI, Vaughan TL, Weiss NS. Trends in the incidence rates of nasopharyngeal carcinoma among Chinese Americans living in Los Angeles County and the San Francisco metropolitan area, 19922002. Am J Epidemiol. 2005;162:1174–8.

    Article  PubMed  Google Scholar 

  96. Arnold M, Wildeman MA, Visser O, et al. Lower mortality from nasopharyngeal cancer in The Netherlands since 1970 with differential incidence trends in histopathology. Oral Oncol. 2012;49(3):237–43. pii: S1368-8375(12)00319-3.

    Article  PubMed  Google Scholar 

  97. Bray F, Haugen M, Moger TA, Tretli S, Aalen OO, Grotmol T. Age-incidence curves of nasopharyngeal carcinoma worldwide: bimodality in low-risk populations and aetiologic implications. Cancer Epidemiol Biomarkers Prev. 2008;17:2356–65.

    Article  PubMed  Google Scholar 

  98. Mousavi SM, Sundquist J, Hemminki K. Nasopharyngeal and hypopharyngeal carcinoma risk among immigrants in Sweden. Int J Cancer. 2010;127:2888–92.

    Article  PubMed  CAS  Google Scholar 

  99. McDermott S, Desmeules M, Lewis R, et al. Cancer incidence among Canadian immigrants, 19801998: results from a national cohort study. J Immigr Minor Health. 2011;13:15–26.

    Article  PubMed  Google Scholar 

  100. Yu WM, Hussain SS. Incidence of nasopharyngeal carcinoma in Chinese immigrants, compared with Chinese in China and South East Asia: review. J Laryngol Otol. 2009;123:1067–74.

    Article  PubMed  CAS  Google Scholar 

  101. Fachiroh J, Sangrajrang S, Johansson M, et al. Tobacco consumption and genetic susceptibility to nasopharyngeal carcinoma (NPC) in Thailand. Cancer Causes Control. 2012;23:1995–2002.

    Article  PubMed  Google Scholar 

  102. Xu FH, Xiong D, Xu YF, et al. An epidemiological and molecular study of the relationship between smoking, risk of nasopharyngeal carcinoma, and Epstein-Barr virus activation. J Natl Cancer Inst. 2012;104:1396–410.

    Article  PubMed  CAS  Google Scholar 

  103. Polesel J, Franceschi S, Talamini R, et al. Tobacco smoking, alcohol drinking, and the risk of different histological types of nasopharyngeal cancer in a low-risk population. Oral Oncol. 2011;47:541–5.

    Article  PubMed  Google Scholar 

  104. Ekburanawat W, Ekpanyaskul C, Brennan P, et al. Evaluation of non-viral risk factors for nasopharyngeal carcinoma in Thailand: results from a case-control study. Asian Pac J Cancer Prev. 2010;11(4):929–32.

    PubMed  Google Scholar 

  105. Cheng YJ, Hildesheim A, Hsu MM, et al. Cigarette smoking, alcohol consumption and risk of nasopharyngeal carcinoma in Taiwan. Cancer Causes Control. 1999;10:201–7.

    Article  PubMed  CAS  Google Scholar 

  106. Vaughan TL, Shapiro JA, Burt RD, et al. Nasopharyngeal cancer in a low-risk population: defining risk factors by histological type. Cancer Epidemiol Biomarkers Prev. 1996;5:587–93.

    PubMed  CAS  Google Scholar 

  107. Tse LA, Yu IT, Mang OW, Wong SL. Incidence rate trends of histological subtypes of nasopharyngeal carcinoma in Hong Kong. Br J Cancer. 2006;95:1269–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  108. Friborg JT, Yuan JM, Wang R, Koh WP, Lee HP, Yu MC. A prospective study of tobacco and alcohol use as risk factors for pharyngeal carcinomas in Singapore Chinese. Cancer. 2007;109:1183–91.

    Article  PubMed  Google Scholar 

  109. Hsu WL, Yu KJ, Chien YC, et al. Familial tendency and risk of nasopharyngeal carcinoma in Taiwan: effects of covariates on risk. Am J Epidemiol. 2011;173:292–9.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chow WH, McLaughlin JK, Hrubec Z, Nam JM, Blot WJ. Tobacco use and nasopharyngeal carcinoma in a cohort of US veterans. Int J Cancer. 1993;55:538–40.

    Article  PubMed  CAS  Google Scholar 

  111. Hsu WL, Chen JY, Chien YC, et al. Independent effect of EBV and cigarette smoking on nasopharyngeal carcinoma: a 20-year follow-up study on 9,622 males without family history in Taiwan. Cancer Epidemiol Biomarkers Prev. 2009;18:1218–26.

    Article  PubMed  CAS  Google Scholar 

  112. Jia WH, Qin HD. Non-viral environmental risk factors for nasopharyngeal carcinoma: a systematic review. Semin Cancer Biol. 2012;22:117–26.

    Article  PubMed  Google Scholar 

  113. Hsu WL, Pan WH, Chien YC, et al. Lowered risk of nasopharyngeal carcinoma and intake of plant vitamin, fresh fish, green tea and coffee: a case-control study in Taiwan. PLoS One. 2012;7:e41779.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  114. Polesel J, Negri E, Serraino D, et al. Dietary intakes of carotenoids and other nutrients in the risk of nasopharyngeal carcinoma: a case-control study in Italy. Br J Cancer. 2012;107:1580–3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. Ruan HL, Xu FH, Liu WS, et al. Alcohol and tea consumption in relation to the risk of nasopharyngeal carcinoma in Guangdong, China. Front Med China. 2010;4:448–56.

    Article  PubMed  Google Scholar 

  116. Lin CH, Shen YA, Hung PH, Yu YB, Chen YJ. Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines. BMC Complement Altern Med. 2012;12:201.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. Li Y, Yang H, Cao J. Association between alcohol consumption and cancers in the Chinese population–a systematic review and meta-analysis. PLoS One. 2011;6:e18776.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  118. Chen L, Gallicchio L, Boyd-Lindsley K, et al. Alcohol consumption and the risk of nasopharyngeal carcinoma: a systematic review. Nutr Cancer. 2009;61:1–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  119. Demers PA, Boffetta P, Kogevinas M, et al. Pooled reanalysis of cancer mortality among five cohorts of workers in wood-related industries. Scand J Work Environ Health. 1995;21:179–90.

    Article  PubMed  CAS  Google Scholar 

  120. Hildesheim A, Dosemeci M, Chan CC, et al. Occupational exposure to wood, formaldehyde, and solvents and risk of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2001;10:1145–53.

    PubMed  CAS  Google Scholar 

  121. Yang XR, Diehl S, Pfeiffer R, et al. Evaluation of risk factors for nasopharyngeal carcinoma in high-risk nasopharyngeal carcinoma families in Taiwan. Cancer Epidemiol Biomarkers Prev. 2005;14:900–5.

    Article  PubMed  CAS  Google Scholar 

  122. Siew SS, Kauppinen T, Kyyrönen P, Heikkilä P, Pukkala E. Occupational exposure to wood dust and formaldehyde and risk of nasal, nasopharyngeal, and lung cancer among Finnish men. Cancer Manag Res. 2012;4:223–32.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bachand AM, Mundt KA, Mundt DJ, Montgomery RR. Epidemiological studies of formaldehyde exposure and risk of leukemia and nasopharyngeal cancer: a meta-analysis. Crit Rev Toxicol. 2010;40:85–100.

    Article  PubMed  CAS  Google Scholar 

  124. Hildesheim A, Wang CP. Genetic predisposition factors and nasopharyngeal carcinoma risk: a review of epidemiological association studies, 2000–2011. Semin Cancer Biol. 2012;22:107–16.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  125. Tse KP, Su WH, Chang KP, et al. Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3. Am J Hum Genet. 2009;85:194–203.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Bei X, Li Y, Jia WH, et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet. 2010;42:599–603.

    Article  PubMed  CAS  Google Scholar 

  127. Greenspan JS, Greenspan D, Lennette ET, et al. Replication of Epstein-Barr virus within epithelial cells of oral ‘hairy’ leukoplakia, an AIDS-associated lesion. New Engl J Med. 1985;313:1564–71.

    Article  PubMed  CAS  Google Scholar 

  128. Frangou P, Buettner M, Niedobitek G. Epstein-Barr virus (EBV) infection in epithelial cells in vivo: rare detection of EBV replication in tongue mucosa but not salivary glands. J Infect Dis. 2005;191:238–42.

    Article  PubMed  Google Scholar 

  129. Gratama JW, Oosterveer MA, Zwaan FE, Lepoutre J, Klein G, Ernberg I. Eradication of Epstein-Barr virus by allogeneic bone marrow transplantation: implications for sites of viral latency. Proc Natl Acad Sci U S A. 1988;85:8693–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  130. Hutt-Fletcher LM. Epstein-Barr virus entry. J Virol. 2007;81:7825–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  131. Wang X, Kenyon WJ, Li Q, Mullberg J, Hutt-Fletcher LM. Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J Virol. 1998;72:5552–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Chan ASC, To KF, Lo KW, et al. High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from Southern Chinese. Cancer Res. 2000;60:5365–70.

    PubMed  CAS  Google Scholar 

  133. Lo KW, Chung GTY, To KF. Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol. 2012;22:79–86.

    Article  PubMed  CAS  Google Scholar 

  134. Lung HL, Cheung AKL, Ko JMY, Cheng Y, Stanbridge EJ, Lung ML. Deciphering the molecular genetic basis of NPC through functional approaches. Semin Cancer Biol. 2012;22:87–95.

    Article  PubMed  CAS  Google Scholar 

  135. Chan ASC, To KF, Lo KW, et al. Frequent chromosome 9p losses in histologically normal nasopharyngeal epithelia from Southern Chinese. Int J Cancer. 2002;102:300–3.

    Article  PubMed  CAS  Google Scholar 

  136. Knox PG, Li QX, Rickinson AB, Young LS. In vitro production of stable Epstein-Barr virus-positive epithelial cell clones which resemble the virus: cell interaction observed in nasopharyngeal carcinoma. Virology. 1996;215:40–50.

    Article  PubMed  CAS  Google Scholar 

  137. Tsang CM, Yip YL, Lo KW, et al. Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells. Proc Natl Acad Sci U S A. 2012;109:E3473–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  138. Liu Z, Ji MF, Huang QH, et al. Two Epstein-Barr virus-related serologic antibody tests in nasopharyngeal carcinoma screening: results from the initial phase of a cluster randomized controlled trial in Southern China. Am J Epidemiol. 2012;7:e45908.

    Google Scholar 

  139. Long HM, Taylor GS, Rickinson AB. Immune defence against EBV and EBV-associated disease. Curr Opin Immunol. 2011;23:1–7.

    Article  CAS  Google Scholar 

  140. Tao Q, Chan ATC. Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments. Expert Rev Mol Med. 2007;9:1–24.

    Article  PubMed  Google Scholar 

  141. Lo YM, Chan AT, Chan LY, et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA. Cancer Res. 2000;60:6878–81.

    PubMed  CAS  Google Scholar 

  142. Chan AT, Lo YM, Zee B, et al. Plasma Epstein-Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J Natl Cancer Inst. 2002;94:1614–9.

    Article  PubMed  CAS  Google Scholar 

  143. Stevens SJ, Verkuijlen SA, Hariwiyanto B, et al. Nonivasive diagnosis of nasopharyngeal carcinoma: nasopharyngeal brushings reveal high Epstein-Barr virus DNA load and carcinoma-specific viral BARF1 mRNA. Int J Cancer. 2006;119:608–14.

    Article  PubMed  CAS  Google Scholar 

  144. Zhang Z, Sun D, Hutajulu SH, et al. Development of a non-invasive method, multiplex methylation specific PCR (MMSP), for early diagnosis of nasopharyngeal carcinoma. PLoS One. 2012;7:e45908.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  145. Chan JY, Gao W, Ho WK, Wei WI, Wong TS. Overexpression of Epstein-Barr virus-encoded microRNA-BART7 in undifferentiated nasopharyngeal carcinoma. Anticancer Res. 2012;32:3201010.

    Google Scholar 

  146. Wang HY, Sun BY, Zhu ZH, et al. Eight-signature classifier for prediction of nasopharyngeal carcinoma survival. J Clin Oncol. 2011;29:4516–25.

    Article  PubMed  Google Scholar 

  147. Chan JY, Chow VL, Tsang R, Wei WI. Nasopharyngectomy for locally advanced recurrent nasopharyngeal carcinoma: exploring the limits. Head Neck. 2012;34:923–8.

    Article  PubMed  Google Scholar 

  148. Chan AT, Hsu MM, Goh BC, et al. Multicenter, phase II study of cetuximab in combination with carboplatin in patients with recurrent or metastatic nasopharyngeal carcinoma. J Clin Oncol. 2005;23:3568–76.

    Article  PubMed  CAS  Google Scholar 

  149. Louis CU, Straathof K, Bollard CM, et al. Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother. 2010;33:983–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  150. Chia WK, Wang WW, Teo M, et al. A phase II study evaluating the safety and efficacy of an adenovirus-ΔLMP1-LMP2 transduced dendritic cell vaccine in patients with advanced metastatic nasopharyngeal carcinoma. Ann Oncol. 2012;23:997–1005.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  151. Wagner HJ, Bollard CM, Vigouroux S, et al. A strategy for treatment of Epstein-Barr virus-positive Hodgkin’s disease by targeting interleukin 12 to the tumour environment using tumour antigen-specific T cells. Cancer Gene Ther. 2004;11:81–91.

    Article  PubMed  CAS  Google Scholar 

  152. Foster AE, Dotti G, Lu A, et al. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J Immunother. 2008;31:500–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  153. Li JH, Chia M, Shi W, et al. Tumor-targeted gene therapy for nasopharyngeal carcinoma. Cancer Res. 2002;62:171–8.

    PubMed  CAS  Google Scholar 

  154. Li JH, Shi W, Chia M, et al. Efficacy of targeted FasL in nasopharyngeal carcinoma. Mol Ther. 2003;8:964–73.

    Article  PubMed  CAS  Google Scholar 

  155. Israel BF, Kenney SC. Virally targeted therapies for EBV-associated malignancies. Oncogene. 2003;22:5122–30.

    Article  PubMed  CAS  Google Scholar 

  156. Feng W, Israel B, Raab-Traub N, Busson P, Kenney SC. Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. Cancer Res. 2002;62:1920–6.

    PubMed  CAS  Google Scholar 

  157. Wilderman MA, Novalic Z, Verkuijlen SAWM, et al. Cytolytic virus activation therapy for Epstein-Barr virus-driven tumors. Clin Cancer Res. 2012;18:5061–70.

    Article  CAS  Google Scholar 

  158. Ambinder RF, Robertson KD, Tao Q. DNA methylation and the Epstein-Barr virus. Semin Cancer Biol. 1999;9:369–75.

    Article  PubMed  CAS  Google Scholar 

  159. Chan AT, Tao Q, Robertson KD, et al. Azacitidine induces demethylation of the Epstein-Barr virus genome in tumors. J Clin Oncol. 2004;22:1373–81.

    Article  PubMed  CAS  Google Scholar 

  160. Murono S, Yoshizaki T, Sato H, Takeshita H, Furukawa M, Pagano JS. Aspirin inhibits tumour cell invasiveness induced by Epstein-Barr virus latent membrane protein 1 through suppression of matrix metalloproteinase-9 expression. Cancer Res. 2000;60:2555–61.

    PubMed  CAS  Google Scholar 

  161. Nasimzzaman M, Kuroda M, Dohno S, et al. Eradication of Epstein-Barr virus episome and associated inhibition of infected tumor cell growth by adenovirus vector-mediated transduction of dominant-negative EBNA1. Mol Ther. 2005;11:578–90.

    Article  CAS  Google Scholar 

  162. Chia MC, Shi W, Li JH, et al. A conditionally replicating adenovirus for nasopharyngeal carcinoma gene therapy. Mol Ther. 2004;9:804–17.

    Article  PubMed  CAS  Google Scholar 

  163. Sokal EM, Hoppenbrouwers K, Vandermeulen C, et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J Infect Dis. 2007;196:1749–53.

    Article  PubMed  Google Scholar 

  164. Rees L, Tizard EJ, Morgan AJ, et al. A phase I trial of Epstein-Barr virus gp350 vaccine for children with chronic kidney disease awaiting transplantation. Transplantation. 2009;88:1025–9.

    Article  PubMed  CAS  Google Scholar 

  165. Bonnet M, Guinebretiere JM, Kremmer E, et al. Detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst. 1999;91:1376–81.

    Article  PubMed  CAS  Google Scholar 

  166. Sugawara Y, Mizugaki Y, Uchida T, et al. Detection of Epstein-Barr virus (EBV) in hepatocellular carcinoma tissue: a novel EBV latency characterised by the absence of EBV-encoded small RNA expression. Virology. 1999;256:196–202.

    Article  PubMed  CAS  Google Scholar 

  167. Huang J, Chen H, Hutt-Fletcher LM, Ambinder RF, Hayward SD. Lytic viral replication as a contributor to the detection of Epstein-Barr virus in breast cancer. J Virol. 2003;77:13267–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  168. Chu PG, Chang KL, Chen YY, Chen WG, Weiss LM. No significant association of Epstein-Barr virus infection with invasive breast carcinoma. Am J Pathol. 2001;159:571–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  169. Junying J, Herrmann K, Davies G, et al. Absence of Epstein-Barr virus DNA in the tumour cells of European hepatocellular carcinoma. Virology. 2003;306:236–43.

    Article  PubMed  CAS  Google Scholar 

  170. Lee JH, Kim SH, Han SH, An JS, Lee ES, Kim YS. Clinicopathological and molecular characteristics of Epstein-Barr virus-associated gastric carcinoma: a meta-analysis. J Gastroenterol Hepatol. 2009;24:354–65.

    Article  PubMed  Google Scholar 

  171. Murphy G, Pfeiffer R, Camargo MC, Rabkin CS. Meta-analysis show that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology. 2009;137:824–33.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Imai S, Koizumi S, Sugiura M, et al. Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc Natl Acad Sci U S A. 1994;91:9131–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  173. Lee HS, Chang MS, Yang HK, Lee BL, Kim WH. Epstein-Barr virus-positive gastric carcinoma has a distinct protein expression profile in comparison with Epstein-Barr virus-negative carcinoma. Clin Cancer Res. 2004;10:1698–705.

    Article  PubMed  CAS  Google Scholar 

  174. Schneider BG, Gulley ML, Eagan P, Bravo JC, Mera R, Geradts J. Loss of p16/CDKN2A tumour suppressor protein in gastric adenocarcinoma is associated with Epstein-Barr virus and anatomic location in the body of the stomach. Hum Pathol. 2000;31:45–50.

    Article  PubMed  CAS  Google Scholar 

  175. Ushiku T, Chong JM, Uozaki H, et al. p73 gene promoter methylation in Epstein-Barr virus-associated gastric carcinoma. Int J Cancer. 2006;120:60–6.

    Article  CAS  Google Scholar 

  176. van Rees BP, Caspers E, zur Hausen A, et al. Different pattern of allelic loss in Epstein-Barr virus-positive gastric cancer with emphasis on the p53 tumour suppressor pathway. Am J Pathol. 2002;161:1207–13.

    Article  PubMed  PubMed Central  Google Scholar 

  177. zur Hausen A, van Rees BP, van Beek J, et al. Epstein-Barr virus in gastric carcinomas and gastric stump carcinomas: a late event in gastric carcinogenesis. J Clin Pathol. 2004;57:487–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  178. Corvalan A, Ding S, Koriyama C, et al. Association of a distinctive strain of Epstein-Barr virus with gastric cancer. Int J Cancer. 2006;118:1736–42.

    Article  PubMed  CAS  Google Scholar 

Suggested Reading

  • Lung ML (Guest Editor). Unlocking the Rosetta stone enigma for nasopharyngeal carcinoma: genetics, viral infection, and other environmental factors. Semin Cancer Biol 2012;22(2):77–172.

    Google Scholar 

  • Tao Q, Chan ATC. Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments. Expert Rev Mol Med. 2007;9:1–24.

    Article  PubMed  Google Scholar 

  • Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ studies have been supported by Cancer Research UK, Leukaemia and Lymphoma Research, and the European Commission’s FP6 Life-Sciences-Health Programme (INCA Project: LSHC-CT-2005-018704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence S. Young PhD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Young, L.S., Dawson, C.W., Woodman, C.B.J. (2014). Epstein-Barr Virus: Nasopharyngeal Carcinoma and Other Epithelial Tumors. In: Kaslow, R., Stanberry, L., Le Duc, J. (eds) Viral Infections of Humans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7448-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7448-8_41

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7447-1

  • Online ISBN: 978-1-4899-7448-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics