Skip to main content

Human Herpesviruses: Malignant Lymphoma

  • Chapter
  • First Online:
Viral Infections of Humans

Abstract

The human gammaherpesviruses, Epstein-Barr virus (EBV, or HHV4) and Kaposi sarcoma-associated herpesvirus (KSHV, or HHV8), are associated with lymphoma. EBV was first discovered in the 1960s in association with Burkitt lymphomas arising in sub-Saharan Africa, while the discovery of KSHV in 1994 was associated with Kaposi sarcoma tumors and driven by the AIDS epidemic. While EBV infection is ubiquitous, KSHV is restricted to certain populations. EBV-associated lymphoproliferative diseases are likewise more common than KSHV-associated lymphoproliferative disease. These two herpesviruses nonetheless share many characteristics. Particularly relevant to lymphoma and lymphoproliferative disease is the ability of these two viruses to infect and establish a reservoir of infection in lymphocytes. Whereas some herpesviruses establish latency in nondividing terminally differentiated cells such as neurons, the gammaherpesviruses establish latency in lymphocytes. The gammaherpesviruses have evolved mechanisms for persisting as extrachromosomal genomes in dividing cells. These cells may be driven to proliferate or be protected from cell death pathways by viral gene expression. The result may be a self-limited lymphoproliferation that establishes or maintains a reservoir of latently infected cells or, under certain circumstances, a malignant lymphoproliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen JI. Epstein-Barr virus infection. New Engl J Med. 2000;343:481–92.

    PubMed  CAS  Google Scholar 

  2. Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. New Engl J Med. 2004;350:1328–37.

    PubMed  CAS  Google Scholar 

  3. Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science. 1994;266:1865–9.

    PubMed  CAS  Google Scholar 

  4. Moore PS, Chang Y. KSHV: forgotten but not gone. Blood. 2011;117:6973–4.

    PubMed  CAS  Google Scholar 

  5. Dunleavy K, Roschewski M, Wilson WH. Lymphomatoid granulomatosis and other Epstein-Barr virus associated lymphoproliferative processes. Curr Hematol Malig Rep. 2012;7:208–15.

    PubMed  Google Scholar 

  6. Diehl V, Krause P, Hellriegel KP, Busche M, Schedel I, Laskewitz E. Lymphoid cell lines: in vitro cell markers in correlation to tumorigenicity in nude mice. Haematol Blood Transfus. 1977;20:289–96.

    PubMed  CAS  Google Scholar 

  7. Roughan JE, Torgbor C, Thorley-Lawson DA. Germinal center B cells latently infected with Epstein-Barr virus proliferate extensively but do not increase in number. J Virol. 2010;84:1158–68.

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Mainou BA, Raab-Traub N. LMP1 strain variants: biological and molecular properties. J Virol. 2006;80:6458–68.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Epeldegui M, Hung YP, McQuay A, Ambinder RF, Martinez-Maza O. Infection of human B cells with Epstein-Barr virus results in the expression of somatic hypermutation-inducing molecules and in the accrual of oncogene mutations. Mol Immunol. 2007;44:934–42.

    PubMed  CAS  Google Scholar 

  10. Rovedo M, Longnecker R. Epstein-Barr virus latent membrane protein 2A preferentially signals through the Src family kinase Lyn. J Virol. 2008;82:8520–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Duca KA, Shapiro M, Delgado-Eckert E, et al. A virtual look at Epstein-Barr virus infection: biological interpretations. PLoS Pathog. 2007;3:1388–400.

    PubMed  CAS  Google Scholar 

  12. Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science. 1990;248:1230–4.

    PubMed  CAS  Google Scholar 

  13. Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity. 2002;16:779–90.

    PubMed  CAS  Google Scholar 

  14. Paulsen SJ, Rosenkilde MM, Eugen-Olsen J, Kledal TN. Epstein-Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J Virol. 2005;79:536–46.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Sin SH, Dittmer DP. Cytokine homologs of human gammaherpesviruses. J Interferon Cytokine Res. 2012;32:53–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Irons RD, Le AT. Dithiocarbamates and viral IL-10 collaborate in the immortalization and evasion of immune response in EBV-infected human B lymphocytes. Chem Biol Interact. 2008;172:81–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Cheng EH, Nicholas J, Bellows DS, et al. A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci U S A. 1997;94:690–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Marshall WL, Yim C, Gustafson E, et al. Epstein-Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak. J Virol. 1999;73:5181–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Martorelli D, Muraro E, Merlo A, et al. Exploiting the interplay between innate and adaptive immunity to improve immunotherapeutic strategies for Epstein-Barr-virus-driven disorders. Clin Dev Immunol. 2012;2012:931952.

    PubMed  PubMed Central  Google Scholar 

  20. Tarodi B, Subramanian T, Chinnadurai G. Epstein-Barr virus BHRF1 protein protects against cell death induced by DNA-damaging agents and heterologous viral infection. Virology. 1994;201:404–7.

    PubMed  CAS  Google Scholar 

  21. Cohen JI, Kimura H, Nakamura S, Ko YH, Jaffe ES. Epstein-Barr virus-associated lymphoproliferative disease in non-immunocompromised hosts: a status report and summary of an international meeting, 8–9 September 2008. Ann Oncol. 2009;20:1472–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Quintanilla-Martinez L, Kumar S, Fend F, et al. Fulminant EBV(+) T-cell lymphoproliferative disorder following acute/chronic EBV infection: a distinct clinicopathologic syndrome. Blood. 2000;96:443–51.

    PubMed  CAS  Google Scholar 

  23. Rodriguez-Pinilla SM, Barrionuevo C, Garcia J, et al. EBV-associated cutaneous NK/T-cell lymphoma: review of a series of 14 cases from Peru in children and young adults. Am J Surg Pathol. 2010;34:1773–82.

    PubMed  Google Scholar 

  24. Ohshima K, Kimura H, Yoshino T, et al. Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV T-LPD. Pathol Int. 2008;58:209–17.

    PubMed  CAS  Google Scholar 

  25. Roschewski M, Wilson WH. Lymphomatoid granulomatosis. Cancer J. 2012;18:469–74.

    PubMed  CAS  Google Scholar 

  26. Burkitt D. A sarcoma involving the jaws in African children. Br J Surg. 1958;46:218–23.

    PubMed  CAS  Google Scholar 

  27. O’Conor GT, Davies JN. Malignant tumors in African children. With special reference to malignant lymphoma. J Pediatr. 1960;56:526–35.

    PubMed  Google Scholar 

  28. Epstein MA, Barr YM. Cultivation in vitro of human lymphoblasts from Burkitt’s malignant lymphoma. Lancet. 1964;1:252–3.

    PubMed  CAS  Google Scholar 

  29. de-The G, Geser A, Day NE, et al. Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature. 1978;274:756–61.

    PubMed  CAS  Google Scholar 

  30. Henle G, Henle W. Immunofluorescence in cells derived from Burkitt’s lymphoma. J Bacteriol. 1966;91:1248–56.

    PubMed  CAS  PubMed Central  Google Scholar 

  31. zur Hausen H, Schulte-Holthausen H, Klein G, et al. EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature. 1970;228:1056–8.

    PubMed  CAS  Google Scholar 

  32. Epstein MA, Hunt RD, Rabin H. Pilot experiments with EB virus in owl monkeys (Aotus trivirgatus). I Reticuloproliferative disease in an inoculated animal. Int J Cancer. 1973;12:309–18.

    PubMed  CAS  Google Scholar 

  33. Burkitt D, Wright D. Geographical and tribal distribution of the African lymphoma in Uganda. Br Med J. 1966;1:569–73.

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Molyneux EM, Rochford R, Griffin B, et al. Burkitt’s lymphoma. Lancet. 2012;379:1234–44.

    PubMed  Google Scholar 

  35. Diebold J, Jaffe E, Raphael M, Warnke RA. Burkitt lymphoma. Lyon: IARC Press; 2001.

    Google Scholar 

  36. Kelly GL, Rickinson AB. Burkitt lymphoma: revisiting the pathogenesis of a virus-associated malignancy. Hematology Am Soc Hematol Educ Program. 2007:277–84.

    Google Scholar 

  37. Blum KA, Lozanski G, Byrd JC. Adult Burkitt leukemia and lymphoma. Blood. 2004;104:3009–20.

    PubMed  CAS  Google Scholar 

  38. Harris NL, Jaffe ES, Diebold J, et al. The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical Advisory Committee meeting, Airlie House, Virginia, November, 1997. Ann Oncol. 1999;10:1419–32.

    PubMed  CAS  Google Scholar 

  39. Shiramizu B, Barriga F, Neequaye J, et al. Patterns of chromosomal breakpoint locations in Burkitt’s lymphoma: relevance to geography and Epstein-Barr virus association. Blood. 1991;77:1516–26.

    PubMed  CAS  Google Scholar 

  40. Pelicci PG, Knowles 2nd DM, Magrath I, Dalla-Favera R. Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci U S A. 1986;83:2984–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156:744–56.

    PubMed  CAS  Google Scholar 

  42. Piriou E, Asito AS, Sumba PO, et al. Early age at time of primary Epstein-Barr virus infection results in poorly controlled viral infection in infants from Western Kenya: clues to the etiology of endemic Burkitt lymphoma. J Infect Dis. 2012;205:906–13.

    PubMed  PubMed Central  Google Scholar 

  43. Biggar RJ, Henle W, Fleisher G, Bocker J, Lennette ET, Henle G. Primary Epstein-Barr virus infections in African infants. I. Decline of maternal antibodies and time of infection. Int J Cancer. 1978;22:239–43.

    PubMed  CAS  Google Scholar 

  44. Chene A, Donati D, Guerreiro-Cacais AO, et al. A molecular link between malaria and Epstein-Barr virus reactivation. PLoS Pathog. 2007;3:e80.

    PubMed  PubMed Central  Google Scholar 

  45. Simone O, Bejarano MT, Pierce SK, et al. TLRs innate immunereceptors and Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) CIDR1alpha-driven human polyclonal B-cell activation. Acta Trop. 2011;119:144–50.

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Moormann AM, Chelimo K, Sumba OP, et al. Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children. J Infect Dis. 2005;191:1233–8.

    PubMed  Google Scholar 

  47. Ramiro AR, Jankovic M, Callen E, et al. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature. 2006;440:105–9.

    PubMed  CAS  Google Scholar 

  48. Xu Z, Zan H, Pone EJ, Mai T, Casali P. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol. 2012;12:517–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Snider CJ, Cole SR, Chelimo K, et al. Recurrent Plasmodium falciparum malaria infections in Kenyan children diminish T-cell immunity to Epstein Barr virus lytic but not latent antigens. PLoS One. 2012;7:e31753.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Moormann AM, Heller KN, Chelimo K, et al. Children with endemic Burkitt lymphoma are deficient in EBNA1-specific IFN-gamma T cell responses. Int J Cancer. 2009;124:1721–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Tepper CG, Seldin MF. Modulation of caspase-8 and FLICE-inhibitory protein expression as a potential mechanism of Epstein-Barr virus tumorigenesis in Burkitt’s lymphoma. Blood. 1999;94:1727–37.

    PubMed  CAS  Google Scholar 

  52. Fanidi A, Hancock DC, Littlewood TD. Suppression of c-Myc-induced apoptosis by the Epstein-Barr virus gene product BHRF1. J Virol. 1998;72:8392–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol. 1987;129:86–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Staal SP, Ambinder R, Beschorner WE, Hayward GS, Mann R. A survey of Epstein-Barr virus DNA in lymphoid tissue. Frequent detection in Hodgkin’s disease. Am J Clin Pathol. 1989;91:1–5.

    PubMed  CAS  Google Scholar 

  55. Weiss LM, Movahed LA, Warnke RA, Sklar J. Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. New Engl J Med. 1989;320:502–6.

    PubMed  CAS  Google Scholar 

  56. Delsol G, Brousset P, Chittal S, Rigal-Huguet F. Correlation of the expression of Epstein-Barr virus latent membrane protein and in situ hybridization with biotinylated BamHI-W probes in Hodgkin’s disease. Am J Pathol. 1992;140:247–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  57. SEER Cancer Statistics Review, 1975–2009. National Cancer Institute, 2012. http://seer.cancer.gov/csr/1975_2009_pops09/.

  58. Glaser SL, Lin RJ, Stewart SL, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70:375–82.

    PubMed  CAS  Google Scholar 

  59. Keegan TH, Glaser SL, Clarke CA, et al. Epstein-Barr virus as a marker of survival after Hodgkin’s lymphoma: a population-based study. J Clin Oncol. 2005;23:7604–13.

    PubMed  Google Scholar 

  60. Ambinder RF, Browning PJ, Lorenzana I, et al. Epstein-Barr virus and childhood Hodgkin’s disease in Honduras and the United States. Blood. 1993;81:462–7.

    PubMed  CAS  Google Scholar 

  61. Chang KL, Albujar PF, Chen YY, Johnson RM, Weiss LM. High prevalence of Epstein-Barr virus in the Reed-Sternberg cells of Hodgkin’s disease occurring in Peru. Blood. 1993;81:496–501.

    PubMed  CAS  Google Scholar 

  62. Chabay PA, Barros MH, Hassan R, et al. Pediatric Hodgkin lymphoma in 2 South American series: a distinctive epidemiologic pattern and lack of association of Epstein-Barr virus with clinical outcome. J Pediatr Hematol Oncol. 2008;30:285–91.

    PubMed  Google Scholar 

  63. Glaser SL, Gulley ML, Clarke CA, et al. Racial/ethnic variation in EBV-positive classical Hodgkin lymphoma in California populations. Int J Cancer. 2008;123:1499–507.

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Hjalgrim H, Askling J, Rostgaard K, et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. New Engl J Med. 2003;349:1324–32.

    PubMed  CAS  Google Scholar 

  65. Glaser SL, Clarke CA, Gulley ML, et al. Population-based patterns of human immunodeficiency virus-related Hodgkin lymphoma in the Greater San Francisco Bay Area, 1988–1998. Cancer. 2003;98:300–9.

    PubMed  Google Scholar 

  66. Biggar RJ, Jaffe ES, Goedert JJ, Chaturvedi A, Pfeiffer R, Engels EA. Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood. 2006;108:3786–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Roithmann S, Tourani JM, Andrieu JM. Hodgkin’s disease in HIV-infected intravenous drug abusers. New Engl J Med. 1990;323:275–6.

    PubMed  CAS  Google Scholar 

  68. Levin LI, Chang ET, Ambinder RF, et al. Atypical prediagnosis Epstein-Barr virus serology restricted to EBV-positive Hodgkin lymphoma. Blood. 2012;120(18):3750–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Gutensohn N, Cole P. Epidemiology of Hodgkin’s disease in the young. Int J Cancer. 1977;19:595–604.

    PubMed  CAS  Google Scholar 

  70. Chang ET, Zheng T, Weir EG, et al. Childhood social environment and Hodgkin’s lymphoma: new findings from a population-based case–control study. Cancer Epidemiol Biomarkers Prev. 2004;13:1361–70.

    PubMed  Google Scholar 

  71. Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet. 1991;337:320–2.

    PubMed  CAS  Google Scholar 

  72. Martin P, Salas C, Provencio M, Abraira V, Bellas C. Heterogeneous expression of Src tyrosine kinases Lyn, Fyn and Syk in classical Hodgkin lymphoma: prognostic implications. Leuk Lymphoma. 2011;52:2162–8.

    PubMed  CAS  Google Scholar 

  73. Chetaille B, Bertucci F, Finetti P, et al. Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood. 2009;113:2765–3775.

    PubMed  CAS  Google Scholar 

  74. Baumforth KR, Birgersdotter A, Reynolds GM, et al. Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates Up-regulation of CCL20 and the migration of regulatory T cells. Am J Pathol. 2008;173:195–204.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Barros MH, Hassan R, Niedobitek G. Tumor-associated macrophages in pediatric classical Hodgkin lymphoma: association with Epstein-Barr virus, lymphocyte subsets and prognostic impact. Clin Cancer Res. 2012;18(14):3762–71.

    PubMed  CAS  Google Scholar 

  76. Kamper P, Bendix K, Hamilton-Dutoit S, Honore B, Nyengaard JR, D’Amore F. Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin’s lymphoma. Haematologica. 2011;96:269–76.

    PubMed  PubMed Central  Google Scholar 

  77. Steidl C, Lee T, Shah SP, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. New Engl J Med. 2010;362:875–85.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Tan KL, Scott DW, Hong F, et al. Tumor-associated macrophages predict inferior outcomes in classical Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial. Blood. 2012;120(16):3280–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Tzankov A, Matter MS, Dirnhofer S. Refined prognostic role of CD68-positive tumor macrophages in the context of the cellular micromilieu of classical Hodgkin lymphoma. Pathobiology. 2010;77:301–8.

    PubMed  CAS  Google Scholar 

  80. Zaki MA, Wada N, Ikeda J, et al. Prognostic implication of types of tumor-associated macrophages in Hodgkin lymphoma. Virchows Arch. 2011;459:361–6.

    PubMed  CAS  Google Scholar 

  81. Domingo-Domenech E, de Sanjose S, Gonzalez-Barca E, et al. Post-transplant lymphomas: a 20-year epidemiologic, clinical and pathologic study in a single center. Haematologica. 2001;86:715–21.

    PubMed  CAS  Google Scholar 

  82. Caillard S, Dharnidharka V, Agodoa L, Bohen E, Abbott K. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation. 2005;80:1233–43.

    PubMed  CAS  Google Scholar 

  83. Opelz G, Henderson R. Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet. 1993;342:1514–6.

    PubMed  CAS  Google Scholar 

  84. Capello D, Gaidano G. Post-transplant lymphoproliferative disorders: role of viral infection, genetic lesions and antigen stimulation in the pathogenesis of the disease. Mediterr J Hematol Infect Dis. 2009;1:e2009018.

    PubMed  PubMed Central  Google Scholar 

  85. Vakiani E, Basso K, Klein U, et al. Genetic and phenotypic analysis of B-cell post-transplant lymphoproliferative disorders provides insights into disease biology. Hematol Oncol. 2008;26:199–211.

    PubMed  CAS  Google Scholar 

  86. Evens AM, David KA, Helenowski I, et al. Multicenter analysis of 80 solid organ transplantation recipients with post-transplantation lymphoproliferative disease: outcomes and prognostic factors in the modern era. J Clin Oncol. 2010;28:1038–46.

    PubMed  PubMed Central  Google Scholar 

  87. Ghobrial IM, Habermann TM, Macon WR, et al. Differences between early and late posttransplant lymphoproliferative disorders in solid organ transplant patients: are they two different diseases? Transplantation. 2005;79:244–7.

    PubMed  Google Scholar 

  88. Nelson BP, Nalesnik MA, Bahler DW, Locker J, Fung JJ, Swerdlow SH. Epstein-Barr virus-negative post-transplant lymphoproliferative disorders: a distinct entity? Am J Surg Pathol. 2000;24:375–85.

    PubMed  CAS  Google Scholar 

  89. Evens AM, Roy R, Sterrenberg D, Moll MZ, Chadburn A, Gordon LI. Post-transplantation lymphoproliferative disorders: diagnosis, prognosis, and current approaches to therapy. Curr Oncol Rep. 2010;12:383–94.

    PubMed  Google Scholar 

  90. Tanner JE, Alfieri C. The Epstein-Barr virus and post-transplant lymphoproliferative disease: interplay of immunosuppression, EBV, and the immune system in disease pathogenesis. Transpl Infect Dis. 2001;3:60–9.

    PubMed  CAS  Google Scholar 

  91. Hopwood P, Crawford DH. The role of EBV in post-transplant malignancies: a review. J Clin Pathol. 2000;53:248–54.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Krams SM, Martinez OM. Epstein-Barr virus, rapamycin, and host immune responses. Curr Opin Organ Transplant. 2008;13:563–8.

    PubMed  PubMed Central  Google Scholar 

  93. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117:5019–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Swerdlow SH. T-cell and NK-cell posttransplantation lymphoproliferative disorders. Am J Clin Pathol. 2007;127:887–95.

    PubMed  Google Scholar 

  95. Dockrell DH, Strickler JG, Paya CV. Epstein-Barr virus-induced T cell lymphoma in solid organ transplant recipients. Clin Infect Dis. 1998;26:180–2.

    PubMed  CAS  Google Scholar 

  96. Parker A, Bowles K, Bradley JA, et al. Diagnosis of post-transplant lymphoproliferative disorder in solid organ transplant recipients – BCSH and BTS Guidelines. Br J Haematol. 2010;149:675–92.

    PubMed  Google Scholar 

  97. Cavaliere R, Petroni G, Lopes MB, Schiff D. Primary central nervous system post-transplantation lymphoproliferative disorder: an International Primary Central Nervous System Lymphoma Collaborative Group Report. Cancer. 2010;116:863–70.

    PubMed  PubMed Central  Google Scholar 

  98. Snanoudj R, Durrbach A, Leblond V, et al. Primary brain lymphomas after kidney transplantation: presentation and outcome. Transplantation. 2003;76:930–7.

    PubMed  Google Scholar 

  99. Heslop HE. How I, treat EBV lymphoproliferation. Blood. 2009;114:4002–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Funch DP, Walker AM, Schneider G, Ziyadeh NJ, Pescovitz MD. Ganciclovir and acyclovir reduce the risk of post-transplant lymphoproliferative disorder in renal transplant recipients. Am J Transplant. 2005;5:2894–900.

    PubMed  CAS  Google Scholar 

  101. Knight JS, Tsodikov A, Cibrik DM, Ross CW, Kaminski MS, Blayney DW. Lymphoma after solid organ transplantation: risk, response to therapy, and survival at a transplantation center. J Clin Oncol. 2009;27:3354–62.

    PubMed  Google Scholar 

  102. Landgren O, Gilbert ES, Rizzo JD, et al. Risk factors for lymphoproliferative disorders after allogeneic hematopoietic cell transplantation. Blood. 2009;113:4992–5001.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Beiras-Fernandez A, Thein E, Hammer C. Induction of immunosuppression with polyclonal antithymocyte globulins: an overview. Exp Clin Transplant. 2003;1:79–84.

    PubMed  CAS  Google Scholar 

  104. Brunstein CG, Weisdorf DJ, DeFor T, et al. Marked increased risk of Epstein-Barr virus-related complications with the addition of antithymocyte globulin to a nonmyeloablative conditioning prior to unrelated umbilical cord blood transplantation. Blood. 2006;108:2874–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. van Esser JW, van der Holt B, Meijer E, et al. Epstein-Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell–depleted SCT. Blood. 2001;98:972–8.

    PubMed  Google Scholar 

  106. Kanakry JA, Kasamon YL, Bolanos-Meade J, et al. Absence of post-transplantation lymphoproliferative disorder after allogeneic blood or marrow transplantation using post-transplantation cyclophosphamide as graft-versus-host disease prophylaxis. Biology of Blood and Marrow Transplantation. 2013;19(10):1514–7.

    Google Scholar 

  107. Zutter MM, Martin PJ, Sale GE, et al. Epstein-Barr virus lymphoproliferation after bone marrow transplantation. Blood. 1988;72:520–9.

    Google Scholar 

  108. Radojcic V, Pletneva MA, Yen HR, et al. STAT3 signaling in CD4+ T cells is critical for the pathogenesis of chronic sclerodermatous graft-versus-host disease in a murine model. J Immunol. 2010;184:764–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Pastano R, Dell’agnola C, Bason C, et al. Antibodies against human cytomegalovirus late protein UL94 in the pathogenesis of scleroderma-like skin lesions in chronic graft-versus-host disease. Int Immunol. 2012;24:583–91.

    PubMed  CAS  Google Scholar 

  110. Verdeguer A, de Heredia CD, Gonzalez M, et al. Observational prospective study of viral infections in children undergoing allogeneic hematopoietic cell transplantation: a 3-year GETMON experience. Bone Marrow Transplant. 2011;46:119–24.

    PubMed  CAS  Google Scholar 

  111. Dayton JD, Richmond ME, Weintraub RG, Shipp AT, Orjuela M, Addonizio LJ. Role of immunosuppression regimen in post-transplant lymphoproliferative disorder in pediatric heart transplant patients. J Heart Lung Transplant. 2011;30:420–5.

    PubMed  Google Scholar 

  112. Robson R, Cecka JM, Opelz G, Budde M, Sacks S. Prospective registry-based observational cohort study of the long-term risk of malignancies in renal transplant patients treated with mycophenolate mofetil. Am J Transplant. 2005;5:2954–60.

    PubMed  CAS  Google Scholar 

  113. Beveridge T, Krupp P, McKibbin C. Lymphomas and lymphoproliferative lesions developing under cyclosporin therapy. Lancet. 1984;1:788.

    PubMed  CAS  Google Scholar 

  114. Ganschow R, Schulz T, Meyer T, Broering DC, Burdelski M. Low-dose immunosuppression reduces the incidence of post-transplant lymphoproliferative disease in pediatric liver graft recipients. J Pediatr Gastroenterol Nutr. 2004;38:198–203.

    PubMed  CAS  Google Scholar 

  115. Martin PJ, Hansen JA, Anasetti C, et al. Treatment of acute graft-versus-host disease with anti-CD3 monoclonal antibodies. Am J Kidney Dis. 1988;11:149–52.

    PubMed  CAS  Google Scholar 

  116. Kirk AD, Cherikh WS, Ring M, et al. Dissociation of depletional induction and posttransplant lymphoproliferative disease in kidney recipients treated with alemtuzumab. Am J Transplant. 2007;7:2619–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Hoegh-Petersen M, Goodyear D, Geddes MN, et al. High incidence of post transplant lymphoproliferative disorder after antithymocyte globulin-based conditioning and ineffective prediction by day 28 EBV-specific T lymphocyte counts. Bone Marrow Transplant. 2011;46:1104–12.

    PubMed  CAS  Google Scholar 

  118. Buyck HC, Ball S, Junagade P, Marsh J, Chakrabarti S. Prior immunosuppressive therapy with antithymocyte globulin increases the risk of EBV-related lymphoproliferative disorder following allo-SCT for acquired aplastic anaemia. Bone Marrow Transplant. 2009;43:813–6.

    PubMed  CAS  Google Scholar 

  119. Carbone A, Gloghini A. AIDS-related lymphomas: from pathogenesis to pathology. Br J Haematol. 2005;130:662–70.

    PubMed  CAS  Google Scholar 

  120. Goedert JJ. The epidemiology of acquired immunodeficiency syndrome malignancies. Semin Oncol. 2000;27:390–401.

    PubMed  CAS  Google Scholar 

  121. Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF. HIV-associated lymphomas and gamma-herpesviruses. Blood. 2009;113:1213–24.

    PubMed  CAS  Google Scholar 

  122. Davi F, Delecluse HJ, Guiet P, et al. Burkitt-like lymphomas in AIDS patients: characterization within a series of 103 human immunodeficiency virus-associated non-Hodgkin’s lymphomas. Burkitt’s Lymphoma Study Group. J Clin Oncol. 1998;16:3788–95.

    PubMed  CAS  Google Scholar 

  123. Mutalima N, Molyneux EM, Johnston WT, et al. Impact of infection with human immunodeficiency virus-1 (HIV) on the risk of cancer among children in Malawi – preliminary findings. Infect Agents Cancer. 2010;5:5.

    PubMed  PubMed Central  Google Scholar 

  124. Delecluse HJ, Anagnostopoulos I, Dallenbach F, et al. Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood. 1997;89:1413–20.

    PubMed  CAS  Google Scholar 

  125. Jaffe ES, Pittaluga S. Aggressive B-cell lymphomas: a review of new and old entities in the WHO classification. Hematology Am Soc Hematol Educ Program. 2011;2011:506–14.

    PubMed  Google Scholar 

  126. Valera A, Balague O, Colomo L, et al. IG/MYC rearrangements are the main cytogenetic alteration in plasmablastic lymphomas. Am J Surg Pathol. 2010;34:1686–94.

    PubMed  PubMed Central  Google Scholar 

  127. Taddesse-Heath L, Meloni-Ehrig A, Scheerle J, Kelly JC, Jaffe ES. Plasmablastic lymphoma with MYC translocation: evidence for a common pathway in the generation of plasmablastic features. Mod Pathol. 2010;23:991–9.

    PubMed  Google Scholar 

  128. Iuchi K, Ichimiya A, Akashi A, et al. Non-Hodgkin’s lymphoma of the pleural cavity developing from long-standing pyothorax. Cancer. 1987;60:1771–5.

    PubMed  CAS  Google Scholar 

  129. Ohsawa M, Tomita Y, Kanno H, et al. Role of Epstein-Barr virus in pleural lymphomagenesis. Mod Pathol. 1995;8:848–53.

    PubMed  CAS  Google Scholar 

  130. Fukayama M, Ibuka T, Hayashi Y, Ooba T, Koike M, Mizutani S. Epstein-Barr virus in pyothorax-associated pleural lymphoma. Am J Pathol. 1993;143:1044–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Nakatsuka S, Yao M, Hoshida Y, Yamamoto S, Iuchi K, Aozasa K. Pyothorax-associated lymphoma: a review of 106 cases. J Clin Oncol. 2002;20:4255–60.

    PubMed  Google Scholar 

  132. Martin A, Capron F, Liguory-Brunaud MD, De Frejacques C, Pluot M, Diebold J. Epstein-Barr virus-associated primary malignant lymphomas of the pleural cavity occurring in longstanding pleural chronic inflammation. Hum Pathol. 1994;25:1314–8.

    PubMed  CAS  Google Scholar 

  133. Miller DV, Firchau DJ, McClure RF, Kurtin PJ, Feldman AL. Epstein-Barr virus-associated diffuse large B-cell lymphoma arising on cardiac prostheses. Am J Surg Pathol. 2010;34:377–84.

    PubMed  Google Scholar 

  134. Moruzzo D, Bindi M, Bongiorni MG, Castiglioni M. A rare case of non-Hodgkin lymphoma in a pacemaker pocket. Leuk Lymphoma. 2009;50:1384–5.

    PubMed  Google Scholar 

  135. Fujimoto M, Haga H, Okamoto M, et al. EBV-associated diffuse large B-cell lymphoma arising in the chest wall with surgical mesh implant. Pathol Int. 2008;58:668–71.

    PubMed  Google Scholar 

  136. Hojo N, Yakushijin Y, Narumi H, et al. Non-Hodgkin’s lymphoma developing in a pacemaker pocket. Int J Hematol. 2003;77:387–90.

    PubMed  Google Scholar 

  137. Cheuk W, Chan AC, Chan JK, Lau GT, Chan VN, Yiu HH. Metallic implant-associated lymphoma: a distinct subgroup of large B-cell lymphoma related to pyothorax-associated lymphoma? Am J Surg Pathol. 2005;29:832–6.

    PubMed  Google Scholar 

  138. Valli R, Piana S, Capodanno I, Cavazza A. Diffuse large B-cell lymphoma associated with chronic inflammation arising in a renal pseudocyst. Int J Surg Pathol. 2011;19:117–9.

    PubMed  Google Scholar 

  139. Copie-Bergman C, Niedobitek G, Mangham DC, et al. Epstein-Barr virus in B-cell lymphomas associated with chronic suppurative inflammation. J Pathol. 1997;183:287–92.

    PubMed  CAS  Google Scholar 

  140. Boroumand N, Ly TL, Sonstein J, Medeiros LJ. Microscopic diffuse large B-cell lymphoma (DLBCL) occurring in pseudocysts: do these tumors belong to the category of DLBCL associated with chronic inflammation? Am J Surg Pathol. 2012;36:1074–80.

    PubMed  Google Scholar 

  141. Chim CS, Pang YY, Ooi GC, Mok MY, Shek TW. EBV-associated synovial lymphoma in a chronically inflamed joint in rheumatoid arthritis receiving prolonged methotrexate treatment. Haematologica. 2006;91:ECR31.

    PubMed  CAS  Google Scholar 

  142. Petitjean B, Jardin F, Joly B, et al. Pyothorax-associated lymphoma: a peculiar clinicopathologic entity derived from B cells at late stage of differentiation and with occasional aberrant dual B- and T-cell phenotype. Am J Surg Pathol. 2002;26:724–32.

    PubMed  Google Scholar 

  143. Oyama T, Yamamoto K, Asano N, et al. Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: a study of 96 patients. Clin Cancer Res. 2007;13:5124–32.

    PubMed  CAS  Google Scholar 

  144. Hofscheier A, Ponciano A, Bonzheim I, et al. Geographic variation in the prevalence of Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly: a comparative analysis of a Mexican and a German population. Mod Pathol. 2011;24:1046–54.

    PubMed  Google Scholar 

  145. Pan Y, Meng B, Zhang H, et al. Low incidence of Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly in Tianjin, northern China. Leuk Lymphoma. 2012;54(2):298–303.

    PubMed  Google Scholar 

  146. Montes-Moreno S, Odqvist L, Diaz-Perez JA, et al. EBV-positive diffuse large B-cell lymphoma of the elderly is an aggressive post-germinal center B-cell neoplasm characterized by prominent nuclear factor-kB activation. Mod Pathol. 2012;25:968–82.

    PubMed  CAS  Google Scholar 

  147. Beltran BE, Castillo JJ, Morales D, et al. EBV-positive diffuse large B-cell lymphoma of the elderly: a case series from Peru. Am J Hematol. 2011;86:663–7.

    PubMed  Google Scholar 

  148. Castillo JJ, Beltran BE, Miranda RN, Paydas S, Winer ES, Butera JN. Epstein-barr virus-positive diffuse large B-cell lymphoma of the elderly: what we know so far. Oncologist. 2011;16:87–96.

    PubMed  PubMed Central  Google Scholar 

  149. Nguyen-Van D, Keane C, Han E, et al. Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly expresses EBNA3A with conserved CD8 T-cell epitopes. Am J Blood Res. 2011;1:146–59.

    PubMed  CAS  PubMed Central  Google Scholar 

  150. Asano N, Yamamoto K, Tamaru J, et al. Age-related Epstein-Barr virus (EBV)-associated B-cell lymphoproliferative disorders: comparison with EBV-positive classic Hodgkin lymphoma in elderly patients. Blood. 2009;113:2629–36.

    PubMed  CAS  Google Scholar 

  151. Hatanaka K, Nakamura N, Kojima M, et al. Methotrexate-associated lymphoproliferative disorders mimicking angioimmunoblastic T-cell lymphoma. Pathol Res Pract. 2010;206:9–13.

    PubMed  CAS  Google Scholar 

  152. Salloum E, Cooper DL, Howe G, et al. Spontaneous regression of lymphoproliferative disorders in patients treated with methotrexate for rheumatoid arthritis and other rheumatic diseases. J Clin Oncol. 1996;14:1943–9.

    PubMed  CAS  Google Scholar 

  153. Hsiao SC, Ichinohasama R, Lin SH, et al. EBV-associated diffuse large B-cell lymphoma in a psoriatic treated with methotrexate. Pathol Res Pract. 2009;205:43–9.

    PubMed  Google Scholar 

  154. Hoshida Y, Tomita Y, Zhiming D, et al. Lymphoproliferative disorders in autoimmune diseases in Japan: analysis of clinicopathological features and Epstein-Barr virus infection. Int J Cancer. 2004;108:443–9.

    PubMed  CAS  Google Scholar 

  155. Mueller N. Overview of the epidemiology of malignancy in immune deficiency. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S5–10.

    PubMed  Google Scholar 

  156. Liebow AA, Carrington CR, Friedman PJ. Lymphomatoid granulomatosis. Hum Pathol. 1972;3:457–558.

    PubMed  CAS  Google Scholar 

  157. Liebow AA. Lymphomatoid granulomatosis. Calif Med. 1972;116:48–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  158. Katzenstein AL, Carrington CB, Liebow AA. Lymphomatoid granulomatosis: a clinicopathologic study of 152 cases. Cancer. 1979;43:360–73.

    PubMed  CAS  Google Scholar 

  159. Moertel CL, Carlson-Green B, Watterson J, Simonton SC. Lymphomatoid granulomatosis after childhood acute lymphoblastic leukemia: report of effective therapy. Pediatrics. 2001;107:E82.

    PubMed  CAS  Google Scholar 

  160. Sun J, Yang Q, Lu Z, et al. Distribution of lymphoid neoplasms in china: analysis of 4,638 cases according to the world health organization classification. Am J Clin Pathol. 2012;138:429–34.

    PubMed  Google Scholar 

  161. Gualco G, Domeny-Duarte P, Chioato L, Barber G, Natkunam Y, Bacchi CE. Clinicopathologic and molecular features of 122 Brazilian cases of nodal and extranodal NK/T-cell lymphoma, nasal type, with EBV subtyping analysis. Am J Surg Pathol. 2011;35:1195–203.

    PubMed  Google Scholar 

  162. Perry AM, Molina-Kirsch H, Nathwani BN, et al. Classification of non-Hodgkin lymphomas in Guatemala according to the World Health Organization system. Leuk Lymphoma. 2011;52:1681–8.

    PubMed  Google Scholar 

  163. Ai WZ, Chang ET, Fish K, Fu K, Weisenburger DD, Keegan TH. Racial patterns of extranodal natural killer/T-cell lymphoma, nasal type, in California: a population-based study. Br J Haematol. 2012;156:626–32.

    PubMed  CAS  Google Scholar 

  164. Cohen JI, Jaffe ES, Dale JK, et al. Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. Blood. 2011;117:5835–49.

    PubMed  CAS  PubMed Central  Google Scholar 

  165. Isobe Y, Aritaka N, Setoguchi Y, et al. T/NK cell type chronic active Epstein-Barr virus disease in adults: an underlying condition for Epstein-Barr virus-associated T/NK-cell lymphoma. J Clin Pathol. 2012;65:278–82.

    PubMed  CAS  Google Scholar 

  166. Zhang Z, Shi Q, An X, et al. NK/T-cell lymphoma in a child with hypersensitivity to mosquito bites. J Pediatr Hematol Oncol. 2009;31:855–7.

    PubMed  Google Scholar 

  167. Asada H. Hypersensitivity to mosquito bites: a unique pathogenic mechanism linking Epstein-Barr virus infection, allergy and oncogenesis. J Dermatol Sci. 2007;45:153–60.

    PubMed  CAS  Google Scholar 

  168. Cho JH, Kim HS, Ko YH, Park CS. Epstein-Barr virus infected natural killer cell lymphoma in a patient with hypersensitivity to mosquito bite. J Infect. 2006;52:e173–6.

    PubMed  Google Scholar 

  169. Tokura Y, Ishihara S, Tagawa S, Seo N, Ohshima K, Takigawa M. Hypersensitivity to mosquito bites as the primary clinical manifestation of a juvenile type of Epstein-Barr virus-associated natural killer cell leukemia/lymphoma. J Am Acad Dermatol. 2001;45:569–78.

    PubMed  CAS  Google Scholar 

  170. Zhou Y, Attygalle AD, Chuang SS, et al. Angioimmunoblastic T-cell lymphoma: histological progression associates with EBV and HHV6B viral load. Br J Haematol. 2007;138:44–53.

    PubMed  CAS  Google Scholar 

  171. Hawley RC, Cankovic M, Zarbo RJ. Angioimmunoblastic T-cell lymphoma with supervening Epstein-Barr virus-associated large B-cell lymphoma. Arch Pathol Lab Med. 2006;130:1707–11.

    PubMed  Google Scholar 

  172. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. New Engl J Med. 1995;332:1186–91.

    PubMed  CAS  Google Scholar 

  173. Chadburn A, Hyjek E, Mathew S, Cesarman E, Said J, Knowles DM. KSHV-positive solid lymphomas represent an extra-cavitary variant of primary effusion lymphoma. Am J Surg Pathol. 2004;28:1401–16.

    PubMed  Google Scholar 

  174. Riva G, Luppi M, Barozzi P, Forghieri F, Potenza L. How I treat HHV8/KSHV-related diseases in posttransplant patients. Blood. 2012;120(20):4150–9.

    Google Scholar 

  175. Du MQ, Liu H, Diss TC, et al. Kaposi sarcoma-associated herpesvirus infects monotypic (IgM lambda) but polyclonal naive B cells in Castleman disease and associated lymphoproliferative disorders. Blood. 2001;97:2130–6.

    PubMed  CAS  Google Scholar 

  176. Seliem RM, Griffith RC, Harris NL, et al. HHV-8+, EBV+ multicentric plasmablastic microlymphoma in an HIV+ Man: the spectrum of HHV-8+ lymphoproliferative disorders expands. Am J Surg Pathol. 2007;31:1439–45.

    PubMed  Google Scholar 

  177. Yates JA, Zakai NA, Griffith RC, Wing EJ, Schiffman FJ. Multicentric Castleman disease, Kaposi sarcoma, hemophagocytic syndrome, and a novel HHV8-lymphoproliferative disorder. AIDS Read. 2007;17:596–8, 601.

    PubMed  Google Scholar 

  178. Glaser SL, Gulley ML, Borowitz MJ, et al. Inter- and intra-observer reliability of Epstein-Barr virus detection in Hodgkin lymphoma using histochemical procedures. Leuk Lymphoma. 2004;45:489–97.

    PubMed  Google Scholar 

  179. Biggar RJ, Henle G, Bocker J, Lennette ET, Fleisher G, Henle W. Primary Epstein-Barr virus infections in African infants. II. Clinical and serological observations during seroconversion. Int J Cancer. 1978;22:244–50.

    PubMed  CAS  Google Scholar 

  180. Zheng D, Wan J, Cho YG, et al. Comparison of humoral immune responses to Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus using a viral proteome microarray. J Infect Dis. 2011;204:1683–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  181. Martelius T, Lappalainen M, Aalto SM, Nihtinen A, Hedman K, Anttila VJ. Clinical characteristics, outcome and the role of viral load in nontransplant patients with Epstein-Barr viraemia. Clin Microbiol Infect. 2010;16:657–62.

    PubMed  CAS  Google Scholar 

  182. Leung SF, Zee B, Ma BB, et al. Plasma Epstein-Barr viral deoxyribonucleic acid quantitation complements tumor-node-metastasis staging prognostication in nasopharyngeal carcinoma. J Clin Oncol. 2006;24:5414–8.

    PubMed  CAS  Google Scholar 

  183. Lo YM, Leung SF, Chan LY, et al. Plasma cell-free Epstein-Barr virus DNA quantitation in patients with nasopharyngeal carcinoma. Correlation with clinical staging. Ann N Y Acad Sci. 2000;906:99–101.

    PubMed  CAS  Google Scholar 

  184. Lo YM, Chan AT, Chan LY, et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA. Cancer Res. 2000;60:6878–81.

    PubMed  CAS  Google Scholar 

  185. Wang ZY, Liu QF, Wang H, et al. Clinical implications of plasma Epstein-Barr virus DNA in early-stage extranodal nasal-type NK/T-cell lymphoma patients receiving primary radiotherapy. Blood. 2012;120:2003–10.

    PubMed  CAS  Google Scholar 

  186. Hohaus S, Santangelo R, Giachelia M, et al. The viral load of Epstein-Barr virus (EBV) DNA in peripheral blood predicts for biological and clinical characteristics in Hodgkin lymphoma. Clin Cancer Res. 2011;17:2885–92.

    PubMed  CAS  Google Scholar 

  187. Gandhi MK, Lambley E, Burrows J, et al. Plasma Epstein-Barr virus (EBV) DNA is a biomarker for EBV-positive Hodgkin’s lymphoma. Clin Cancer. 2006;12:460–4.

    CAS  Google Scholar 

  188. Kanakry JA, Li H, Gellert LL, et al. Plasma Epstein-Barr virus DNA predicts outcome in advanced Hodgkin lymphoma: correlative analysis from a large North American cooperative group trial. Blood. 2013;121:3547–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  189. Tse E1, Kwong YL. How I treat NK/T-cell lymphomas. Blood. 2013;121(25):4997–5005.

    Google Scholar 

  190. Kwong YL, Pang AW, Leung AY, Chim CS, Tse E. Quantification of circulating Epstein-Barr virus DNA in NK/T-cell lymphoma treated with the SMILE protocol: diagnostic and prognostic significance. Leukemia. 2014;28(4):865–70.

    Google Scholar 

  191. Lin L, Lee JY, Kaplan LD, et al. Effects of chemotherapy in AIDS-associated non-Hodgkin’s lymphoma on Kaposi’s sarcoma herpesvirus DNA in blood. J Clin Oncol. 2009;27:2496–502.

    PubMed  CAS  PubMed Central  Google Scholar 

  192. Stebbing J, Adams C, Sanitt A, et al. Plasma HHV8 DNA predicts relapse in individuals with HIV-associated multicentric Castleman disease. Blood. 2011;118:271–5.

    PubMed  CAS  Google Scholar 

  193. Cohen JI, Fauci AS, Varmus H, Nabel GJ. Epstein-Barr virus: an important vaccine target for cancer prevention. Sci Transl Med. 2011;3:107fs7.

    Google Scholar 

  194. Sokal EM, Hoppenbrouwers K, Vandermeulen C, et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J Infect Dis. 2007;196:1749–53.

    PubMed  Google Scholar 

  195. Elliott SL, Suhrbier A, Miles JJ, et al. Phase I trial of a CD8+ T-cell peptide epitope-based vaccine for infectious mononucleosis. J Virol. 2008;82:1448–57.

    PubMed  CAS  PubMed Central  Google Scholar 

  196. Hui EP, Taylor GS, Jia H, et al. Phase 1 trial of recombinant Modified Vaccinia Ankara (MVA) encoding Epstein-Barr viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res. 2013;73(6):1676–88.

    PubMed  CAS  Google Scholar 

  197. Rees L, Tizard EJ, Morgan AJ, et al. A phase I trial of epstein-barr virus gp350 vaccine for children with chronic kidney disease awaiting transplantation. Transplantation. 2009;88:1025–9.

    PubMed  CAS  Google Scholar 

  198. Kanakry JA, Ambinder RF. EBV-related lymphomas: new approaches to treatment. Curr Treat Options Oncol. 2013;14:224–36.

    PubMed  PubMed Central  Google Scholar 

  199. Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92:1549–55.

    PubMed  CAS  Google Scholar 

  200. Haque T, Wilkie GM, Jones MM, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110:1123–31.

    PubMed  CAS  Google Scholar 

  201. Rooney CM, Smith CA, Ng CY, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995;345:9–13.

    PubMed  CAS  Google Scholar 

  202. Doubrovina E, Oflaz-Sozmen B, Prockop SE, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119:2644–56.

    PubMed  CAS  PubMed Central  Google Scholar 

  203. De Angelis B, Dotti G, Quintarelli C, et al. Generation of Epstein-Barr virus-specific cytotoxic T lymphocytes resistant to the immunosuppressive drug tacrolimus (FK506). Blood. 2009;114:4784–91.

    PubMed  PubMed Central  Google Scholar 

  204. Bollard CM, Gottschalk S, Huls MH, et al. In vivo expansion of LMP 1- and 2-specific T-cells in a patient who received donor-derived EBV-specific T-cells after allogeneic stem cell transplantation. Leuk Lymphoma. 2006;47:837–42.

    PubMed  Google Scholar 

  205. El-Mallawany NK, Geller L, Bollard CM, et al. Long-term remission in a child with refractory EBV(+) hydroa vacciniforme-like T-cell lymphoma through sequential matched EBV(+)-related allogeneic hematopoietic SCT followed by donor-derived EBV-specific cytotoxic T-lymphocyte immunotherapy. Bone Marrow Transplant. 2011;46:759–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  206. Hanley PJ, Cruz CR, Savoldo B, et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood. 2009;114:1958–67.

    PubMed  CAS  PubMed Central  Google Scholar 

Suggested Reading

  • Biggar RJ, Jaffe ES, Goedert JJ, Chaturvedi A, Pfeiffer R, Engels EA. Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood. 2006;108:3786–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blum KA, Lozanski G, Byrd JC. Adult Burkitt leukemia and lymphoma. Blood. 2004;104:3009–20.

    PubMed  CAS  Google Scholar 

  • Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF. HIV-associated lymphomas and gamma-herpesviruses. Blood. 2009;113:1213–24.

    PubMed  CAS  Google Scholar 

  • Castillo JJ, Beltran BE, Miranda RN, Paydas S, Winer ES, Butera JN. Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly: what we know so far. Oncologist. 2011;16:87–96.

    PubMed  PubMed Central  Google Scholar 

  • Cohen JI, Jaffe ES, Dale JK, et al. Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. Blood. 2011;117:5835–49.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen JI, Fauci AS, Varmus H, Nabel GJ. Epstein-Barr virus: an important vaccine target for cancer prevention. Sci Transl Med. 2011;3:107fs7.

    Google Scholar 

  • Dunleavy K, Roschewski M, Wilson WH. Lymphomatoid granulomatosis and other Epstein-Barr virus associated lymphoproliferative processes. Curr Hematol Malig Rep. 2012;7:208–15.

    PubMed  Google Scholar 

  • Heslop HE. How I, treat EBV lymphoproliferation. Blood. 2009;114:4002–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115:925–35.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Landgren O, Gilbert ES, Rizzo JD, et al. Risk factors for lymphoproliferative disorders after allogeneic hematopoietic cell transplantation. Blood. 2009;113:4992–5001.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156:744–56.

    PubMed  CAS  Google Scholar 

  • Martorelli D, Muraro E, Merlo A, et al. Exploiting the interplay between innate and adaptive immunity to improve immunotherapeutic strategies for Epstein-Barr-virus-driven disorders. Clin Dev Immunol. 2012;2012:931952.

    PubMed  PubMed Central  Google Scholar 

  • Moore PS, Chang Y. KSHV: forgotten but not gone. Blood. 2011;117:6973–4.

    PubMed  CAS  Google Scholar 

  • Sin SH, Dittmer DP. Cytokine homologs of human gammaherpesviruses. J Interferon Cytokine Res. 2012;32:53–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Swerdlow SH. T-cell and NK-cell posttransplantation lymphoproliferative disorders. Am J Clin Pathol. 2007;127:887–95.

    PubMed  Google Scholar 

  • Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. New Engl J Med. 2004;350:1328–37.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Ambinder MD PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanakry, J.A., Ambinder, R.F. (2014). Human Herpesviruses: Malignant Lymphoma. In: Kaslow, R., Stanberry, L., Le Duc, J. (eds) Viral Infections of Humans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7448-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7448-8_40

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7447-1

  • Online ISBN: 978-1-4899-7448-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics