Skip to main content

Human Herpesviruses: Cytomegalovirus

  • Chapter
  • First Online:
Book cover Viral Infections of Humans

Abstract

Cytomegalovirus (CMV) is significant for human health as a cause of birth defects and infections in immunocompromised patients. Congenital CMV infection is a leading cause of hearing loss and an important cause of mental retardation and cerebral palsy. CMV is a common opportunistic pathogen for immunocompromised patients, especially those with impaired cell mediated immunity due to acquired or congenital immune deficiency syndromes, hematopoietic stem cell transplantation or solid organ transplantation. CMV shares many structural, functional and biological features with other members of the herpesvirus family, including indefinite persistence in its human host. Unique to CMV is the key role of mother to child transmission during birth and through breast milk in maintaining population prevalence of infection. Horizontal transmission of CMV is linked to activities that involve contact with body fluids from another person, notably care of young children and intimate contact. The most pressing challenge for public health posed by CMV is development of an effective means of preventing congenital CMV disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jesionek A, Kiolemenoglou B. Uber einen befund von protozoenartigen gebilden in den organen eines heriditarluetischen fotus. Munch Med Wochenschr. 1904;51:1905–7.

    Google Scholar 

  2. Ribbert D. Uber protozoenartige zellen in der niere eines syphilitischen neugoborenen und in der parotis von kindern. Zentralbl Allg Pathol. 1904;15:945–8.

    Google Scholar 

  3. Goodpasture EW, Talbot FB. Concerning the nature of “protozoan-like” cells in certain lesions of infancy. Am J Dis Child. 1921;21:415–21.

    Google Scholar 

  4. Lipschutz B. Untersuchungen uber die atiologie der krankheiten der herpesgruppe (herpes zoster, herpes genitalis, herpes febrilis). Arch Derm Syph (Berl). 1921;136:428–82.

    Google Scholar 

  5. Farber S, Wolbach SB. Intranuclear and cytoplasmic inclusions (“protozoan-like bodies”) in the salivary glands and other organs of infants. Am J Pathol. 1932;8:123–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Wyatt JP, Saxton J, Lee RS, et al. Generalized cytomegalic inclusion disease. J Pediatr. 1950;36:271–94.

    PubMed  CAS  Google Scholar 

  7. Fetterman GH. A new laboratory aid in the clinical diagnosis of inclusion disease of infancy. Am J Clin Path. 1952;22:424–5.

    PubMed  CAS  Google Scholar 

  8. Weller TH. Cytomegaloviruses: the difficult years. J Infect Dis. 1970;122:532–9.

    PubMed  CAS  Google Scholar 

  9. Smith MG. Propagation in tissue cultures of a cytopathogenic virus from human salivary gland virus disease. Proc Soc Exp Biol. 1956;92:424–30.

    PubMed  CAS  Google Scholar 

  10. Weller TH, Macaulay JC, Craig JM, et al. Isolation of intranuclear inclusion producing agents from infants with illnesses resembling cytomegalic inclusion disease. Proc Soc Exp Biol Med. 1957;94:4–12.

    PubMed  Google Scholar 

  11. Rowe WP, Hartley JW, Waterman S, et al. Cytopathogenic agent resembling human salivary gland virus recovered from tissue cultures of human adenoids. Proc Soc Exp Biol Med. 1956;92:418–24.

    PubMed  CAS  Google Scholar 

  12. Wong TW, Warner NE. Cytomegalic inclusion disease in adults. Report of 14 cases with review of literature. Arch Pathol. 1962;74:403–22.

    PubMed  CAS  Google Scholar 

  13. Klemola E, Kääriäinen L. Cytomegalovirus as a possible cause of a disease resembling infectious mononucleosis. Br Med J. 1965;2:1099–102.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Hedley-Whyte ET. Generalized cytomegalic inclusion disease after renal homotransplantation – Report of a case with isolation of virus. N Engl J Med. 1965;272:473–5.

    PubMed  CAS  Google Scholar 

  15. Graw RGJ, Yankee RA, Rogentine GN, et al. Bone marrow transplantation from HL-A matched donors to patients with acute leukemia. Toxicity and antileukemic effect. Transplantation. 1972;14:79–80.

    PubMed  Google Scholar 

  16. Neiman P, Wasserman PB, Wentworth BB, et al. Interstitial pneumonia and cytomegalovirus infection as complications of human marrow transplantation. Transplantation. 1973;15:478–85.

    PubMed  CAS  Google Scholar 

  17. Gottlieb MS, Schroff R, Schanker HM, et al. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med. 1981;305:1425–31.

    PubMed  CAS  Google Scholar 

  18. Siegal FP, Lopez C, Hammer GS, et al. Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpex simplex lesions. N Engl J Med. 1981;305:1439–44.

    PubMed  CAS  Google Scholar 

  19. Bristow BN, O’Keefe KA, Shafir SC, et al. Congenital cytomegalovirus mortality in the United States, 1990-2006. PLoS Negl Trop Dis. 2011;5:e1140.

    PubMed  PubMed Central  Google Scholar 

  20. Roberts ET, Haan MN, Dowd JB, et al. Cytomegalovirus antibody levels, inflammation and mortality among elderly Latinos over 9 years of follow-up. Am J Epidemiol. 2010;172:363–71.

    PubMed  PubMed Central  Google Scholar 

  21. Strandberg TE, Pitkala KH, Tilvis RS. Cytomegalovirus antibody level and mortality among community-dwelling older adults with stable cardiovascular disease. JAMA. 2009;301:380–2.

    PubMed  CAS  Google Scholar 

  22. Simanek AM, Dowd JB, Pawelec G, et al. Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS One. 2011;6:e16103.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Dollard SC, Grosse SD, Ross DS. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med Virol. 2007;17:355–63.

    PubMed  Google Scholar 

  24. Patel R, Klein DW, Espy MJ, et al. Optimization of detection of cytomegalovirus viremia in transplantation recipients by shell vial assay. J Clin Microbiol. 1995;33:2984–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Warren WP, Balcarek K, Smith R, et al. Comparison of rapid methods of detection of cytomegalovirus in saliva with virus isolation in tissue culture. J Clin Microbiol. 1992;30:786–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Mocarski ESJ, Shenk T, Pass RF. Cytomegaloviruses. In: Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Lippincott, Williams & Wilkins; 2007. p. 2701–72.

    Google Scholar 

  27. Mocarski ESJ, Shenk T, Pass RF, et al. Cytomegaloviruses. In: Knipe DM, Howley PM, editors. Fields virology. 6th ed. Philadelphia: Lippincott, Williams & Wilkins; 2013.

    Google Scholar 

  28. Hizel S, Parker S, Onde U. Seroprevalence of cytomegalovirus infection among children and females in Ankara, Turkey, 1995. Pediatr Int. 1999;41:506–9.

    PubMed  CAS  Google Scholar 

  29. Rodier MH, Berthonneau J, Bourgoin A, et al. Seroprevalences of toxoplasma, malaria, rubella, cytomegalovirus, HIV and treponemal infections among pregnant women in Cotonou, republic of Benin. Acta Trop. 1995;59:271–7.

    PubMed  CAS  Google Scholar 

  30. Sohn YM, Park KI, Lee C, et al. Congenital cytomegalovirus infection in Korean population with very high prevalence of maternal immunity. J Kor Med Sci. 1992;7:47–51.

    CAS  Google Scholar 

  31. Hirota K, Muraguchi K, Watabe N, et al. Prospective study on maternal, intrauterine, and perinatal infections with cytomegalovirus in Japan during 1976-1990. J Med Virol. 1992;37:303–6.

    PubMed  CAS  Google Scholar 

  32. Pannuti CS, Vilas-Boas LS, Angelo MJO, et al. Congenital cytomegalovirus infection. Occurrence in two socioeconomically distinct populations of a developing country. Rev Inst Med Trop Sao Paulo. 1985;27:105–7.

    PubMed  CAS  Google Scholar 

  33. Natali A, Valcavi P, Medici MC, et al. Cytomegalovirus infection in an Italian population: antibody prevalence, virus excretion and maternal transmission. New Microbiol. 1997;20:123–33.

    PubMed  CAS  Google Scholar 

  34. Mustakangas P, Sarna S, Amälä P, et al. Human cytomegalovirus seroprevalence in three socioeconomically different urban areas during the first trimester: a population-based cohort study. Int J Epidemiol. 2000;29:587–91.

    PubMed  CAS  Google Scholar 

  35. Stagno S, Pass RF, Dworsky ME, et al. Maternal cytomegalovirus infection and perinatal transmission. Clin Obstet Gynecol. 1982;25:563–76.

    PubMed  CAS  Google Scholar 

  36. Gratacap-Cavallier B, Bosson JL, Morand P, et al. Cytomegalovirus seroprevalence in French pregnant women: parity and place of birth as major predictive factors. Eur J Epidemiol. 1998;14:147–52.

    PubMed  CAS  Google Scholar 

  37. Griffiths PD, Baboonian C, Ashby D. The demographic characteristics of pregnant women infected with cytomegalovirus. Int J Epidemiol. 1985;14:447–52.

    PubMed  CAS  Google Scholar 

  38. Staras SAS, Dollard SC, Radford K, et al. Cytomegalovirus infection in the United States: seroprevalence and demographic risk factors. Clin Infect Dis. 2006;43:1143–51.

    PubMed  Google Scholar 

  39. Stagno S, Reynolds DW, Pass RF, et al. Breast milk and the risk of cytomegalovirus infection. N Engl J Med. 1980;302:1073–6.

    PubMed  CAS  Google Scholar 

  40. Pass RF. The social ecology of infectious disease transmission in day-care centers. In: Mayer KH, Pizer HF, editors. The social ecology of infectious diseases. 1st ed. London: Elsevier Academic Press; 2008. p. 171–86.

    Google Scholar 

  41. Collier AC, Handsfield HH, Ashley R, et al. Cervical but not urinary excretion of cytomegalovirus is related to sexual activity and contraceptive practices in sexually active women. J Infect Dis. 1995;171:33–8.

    PubMed  CAS  Google Scholar 

  42. Fowler KB, Pass RF. Sexually transmitted diseases in mothers of neonates with congenital cytomegalovirus infection. J Infect Dis. 1991;164:259–64.

    PubMed  CAS  Google Scholar 

  43. Handsfield HH, Chandler SH, Caine VA, et al. Cytomegalovirus infection in sex partners: evidence for sexual transmission. J Infect Dis. 1985;151:344–8.

    PubMed  CAS  Google Scholar 

  44. Sohn YM, Oh MK, Balcarek KB, et al. Cytomegalovirus infection in sexually active adolescents. J Infect Dis. 1991;163:460–3.

    PubMed  CAS  Google Scholar 

  45. Hecker M, Qiu D, Marquardt K, et al. Continuous cytomegalovirus seroconversion in a large group of healthy blood donors. Vox Sang. 2004;86:41–4.

    PubMed  CAS  Google Scholar 

  46. Bate SL, Dollard SC, Cannon MJ. Cytomegalovirus seroprevalence in the United States: The National Health and Nutrition Examination Surveys, 1988-2004. Clin Infect Dis. 2010;50:1439–47.

    PubMed  Google Scholar 

  47. Quinnan Jr GV, Delery M, Rook AH, et al. Comparative virulence and immunogenicity of the Towne strain and a nonattenuated strain of cytomegalovirus. Ann Intern Med. 1984;101:478–83.

    PubMed  Google Scholar 

  48. Colugnati FAB, Staras SAS, Dollard SC, et al. Incidence of cytomegalovirus infection among the general population and pregnant women in the United States. BMC Infect Dis. 2007;7:71.

    PubMed  PubMed Central  Google Scholar 

  49. Stagno S, Pass RF, Cloud G, et al. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA. 1986;256:1904–8.

    PubMed  CAS  Google Scholar 

  50. Balfour CL, Balfour HH. Cytomegalovirus is not an occupational risk for nurses in renal transplant and neonatal units. JAMA. 1986;256:1909–14.

    PubMed  CAS  Google Scholar 

  51. Fowler KB, Stagno S, Pass RF. Interval between births and risk of congenital cytomegalovirus infection. Clin Infect Dis. 2004;38:1035–7.

    PubMed  Google Scholar 

  52. Yeager AS. Transmission of cytomegalovirus to mothers by infected infants: another reason to prevent transfusion-acquired infections. Pediatr Infect Dis. 1983;2:295.

    PubMed  CAS  Google Scholar 

  53. Pass RF, Hutto SC, Ricks R, et al. Increased rate of cytomegalovirus infection among parents of children attending day care centers. N Engl J Med. 1986;314:1414–8.

    PubMed  CAS  Google Scholar 

  54. Murph JR, Baron JC, Brown K, et al. The occupational risk of cytomegalovirus infection among day care providers. JAMA. 1991;265:603–8.

    PubMed  CAS  Google Scholar 

  55. Adler SP. Cytomegalovirus and child day care. Evidence for an increased infection rate among day-care workers. N Engl J Med. 1989;321:1290–6.

    PubMed  CAS  Google Scholar 

  56. Ford-Jones EL, Kitai I, Davis L, et al. Cytomegalovirus infections in Toronto child-care centers: a prospective study of viral excretion in children and seroconversion among day-care providers. Pediatr Infect Dis J. 1996;15:507–14.

    PubMed  CAS  Google Scholar 

  57. Pass RF, Hutto C, Lyon MD, et al. Increased rate of cytomegalovirus infection among day care center workers. Pediatr Infect Dis J. 1990;9:465–70.

    PubMed  CAS  Google Scholar 

  58. Adler SP. The molecular epidemiology of cytomegalovirus transmission among children attending a day care center. J Infect Dis. 1985;152:760–8.

    PubMed  CAS  Google Scholar 

  59. Pass RF, Little EA, Stagno S, et al. Young children as a probable source of maternal and congenital cytomegalovirus infection. N Engl J Med. 1987;316:1366–70.

    PubMed  CAS  Google Scholar 

  60. Stanberry LR, Rosenthal SL, Mills L, et al. Longitudinal risk of herpes simplex virus (HSV) type 1, HSV type 2, and cytomegalovirus infections among young adolescent girls. Clin Infect Dis. 2004;39:1433–8.

    PubMed  Google Scholar 

  61. Chandler SH, Holmes KK, Wentworth BB, et al. The epidemiology of cytomegaloviral infection in women attending a sexually transmitted disease clinic. J Infect Dis. 1985;152:597–605.

    PubMed  CAS  Google Scholar 

  62. Reynolds DW, Stagno S, Hosty TS, et al. Maternal cytomegalovirus excretion and perinatal infection. N Engl J Med. 1973;289:1–5.

    PubMed  CAS  Google Scholar 

  63. Gentile MA, Boll TJ, Stagno S, et al. Intellectual ability of children with perinatal cytomegalovirus infection. Dev Med Child Neurol. 1989;31:782–6.

    PubMed  CAS  Google Scholar 

  64. Yeager AS, Palumbo PE, Malachowski N, et al. Sequelae of maternally derived cytomegalovirus infections in premature infants. J Pediatr. 1983;102:918–22.

    PubMed  CAS  Google Scholar 

  65. Hamprecht K, Maschmann J, Vochem M, et al. Epidemiology of transmission of cytomegalovirus from mother to preterm infant by breastfeeding. Lancet. 2001;357:513–8.

    PubMed  CAS  Google Scholar 

  66. Knox GE, Pass RF, Reynolds DW, et al. Comparative prevalence of subclinical cytomegalovirus and herpes simplex virus infections in the genital and urinary tracts of low income, urban females. J Infect Dis. 1979;140:419–22.

    PubMed  CAS  Google Scholar 

  67. Shen CY, Chang SF, Lin HJ, et al. Cervical cytomegalovirus infection in prostitutes and in women attending a sexually transmitted clinic. J Med Virol. 1994;43:362–6.

    PubMed  CAS  Google Scholar 

  68. Silver MI, Paul P, Sowjanya P, et al. Shedding of Epstein-Barr virus and cytomegalovirus from the genital tract of women in a periurban community in Andhra Pradesh, India. J Clin Microbiol. 2011;49:2435–9.

    PubMed  PubMed Central  Google Scholar 

  69. Hotsubo T, Nagata N, Shimada M, et al. Detection of human cytomegalovirus DNA in breast milk by means of polymerase chain reaction. Microbiol Immunol. 1994;38:809–11.

    PubMed  CAS  Google Scholar 

  70. Vochem M, Hamprecht K, Jahn G, et al. Transmission of cytomegalovirus to preterm infants through breast milk. Pediatr Infect Dis J. 1998;17:53–8.

    PubMed  CAS  Google Scholar 

  71. Jim WT, Shu CH, Chiu NC, et al. Transmission of cytomegalovirus from mothers to preterm infants by breast milk. Pediatr Infect Dis J. 2004;23:848–51.

    PubMed  Google Scholar 

  72. Ahlfors K, Ivarsson SA. Cytomegalovirus in breast milk of Swedish milk donors. Scand J Infect Dis. 1985;17:11–3.

    PubMed  CAS  Google Scholar 

  73. Balcarek KB, Warren W, Smith RJ, et al. Neonatal screening for congenital cytomegalovirus infection by detection of virus in saliva. J Infect Dis. 1993;167:1433–6.

    PubMed  CAS  Google Scholar 

  74. Yamamoto AY, Mussi-Pinhata MM, Marin LJ, et al. Is saliva as reliable as urine for detection of cytomegalovirus DNA for neonatal screening of congenital CMV infection? J Clin Virol. 2006;36:228–30.

    PubMed  CAS  Google Scholar 

  75. Boppana SB, Ross SA, Shimamura M, et al. Saliva polymerase-chain-reaction assay for cytomegalovirus screening in newborns. N Engl J Med. 2011;364:2111–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Boppana SB, Ross SA, Novak Z, et al. Dried blood spot real-time polymerase chain reaction assays to screen newborns for congenital cytomegalovirus infection. JAMA. 2010;303:1375–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Ahlfors K, Ivarsson SA, Harris S. Report on a long-term study of maternal and congenital cytomegalovirus infection in Sweden. Review of prospective studies available in the literature. Scand J Infect Dis. 1999;31:443–57.

    PubMed  CAS  Google Scholar 

  78. Saigal S, Luynk O, Larke B, et al. The outcome in children with congenital cytomegalovirus infection: a longitudinal follow-up study. Am J Dis Child. 1982;136:896–901.

    PubMed  CAS  Google Scholar 

  79. Peckham CS, Chin KS, Coleman JC, et al. Cytomegalovirus infection in pregnancy: preliminary findings from a prospective study. Lancet. 1983;1:1352–5.

    PubMed  CAS  Google Scholar 

  80. Fowler KB, Stagno S, Pass RF. Maternal age and congenital cytomegalovirus infection: screening of two diverse newborn populations, 1980-1990. J Infect Dis. 1993;168:552–6.

    PubMed  CAS  Google Scholar 

  81. Numazaki K, Fujikawa T. Chronological changes of incidence and prognosis of children with asymptomatic congenital cytomegalovirus infection in Sapporo, Japan. BMC Infect Dis. 2004;4:22.

    PubMed  PubMed Central  Google Scholar 

  82. Mussi-Pinhata MM, Yamamoto AY, Brito RM, et al. Birth prevalence and natural history of congenital cytomegalovirus infection in a highly seroimmune population. Clin Infect Dis. 2009;49:522–8.

    PubMed  PubMed Central  Google Scholar 

  83. Stagno S, Reynolds DW, Huang ES, et al. Congenital cytomegalovirus infection: occurrence in an immune population. N Engl J Med. 1977;296:1254–8.

    PubMed  CAS  Google Scholar 

  84. Schopfer K, Lauber E, Krech U. Congenital cytomegalovirus infection in newborn infants of mothers infected before pregnancy. Arch Dis Child. 1978;53:536–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Kaye S, Miles D, Antoine P, et al. Virological and immunological correlates of mother-to-child transmission of cytomegalovirus in the Gambia. J Infect Dis. 2008;197:1307–14.

    PubMed  Google Scholar 

  86. Yamamoto AY, Mussi-Pinhata MM, Pinto PCG, et al. Congenital cytomegalovirus infection in preterm and full-term newborn infants from a population with a high seroprevalence rate. Pediatr Infect Dis J. 2001;20:188–92.

    PubMed  CAS  Google Scholar 

  87. Preece PM, Tookey P, Ades A, et al. Congenital cytomegalovirus infection: predisposing maternal factors. J Epidemiol Community Health. 1986;40:205–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Griffiths PD, Baboonian C. Intrauterine transmission of cytomegalovirus in women known to be immune before conception. J Hyg Camb. 1984;92:89–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Yow MD, Williamson DW, Leeds LJ, et al. Epidemiologic characteristics of cytomegalovirus infection in mothers and their infants. Am J Obstet Gynecol. 1988;158:1189–95.

    PubMed  CAS  Google Scholar 

  90. Lazzarotto T, Varani S, Guerra B, et al. Prenatal indicators of congenital cytomegalovirus infection. J Pediatr. 2000;137:90–5.

    PubMed  CAS  Google Scholar 

  91. Naessens A, Casteels A, Decatte L, et al. A serologic strategy for detecting neonates at risk for congenital cytomegalovirus infection. J Pediatr. 2005;146:194–7.

    PubMed  Google Scholar 

  92. Leurez-Ville M, Salomon LJ, Stirnemann JJ, et al. Prediction of fetal infection in cases with cytomegalovirus immunoglobulin M in the first trimester of pregnancy: a retrospective cohort. Clin Infect Dis. 2013;56(10):1428–35.

    Google Scholar 

  93. Boppana SB, Rivera LB, Fowler KB, et al. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med. 2001;344:1366–71.

    PubMed  CAS  Google Scholar 

  94. Yamamoto AY, Mussi-Pinhata MM, Boppana SB, et al. Human cytomegalovirus reinfection is associated with intrauterine transmission in a highly cytomegalovirus-immune maternal population. Am J Obster Gynecol. 2010;202:297.e1-8.

    Google Scholar 

  95. Gindes L, Teperberg-Oikawa M, Pardo J, et al. Congenital cytomegalovirus infection following primary maternal infection in the third trimester. BJOG. 2008;115:830–5.

    PubMed  CAS  Google Scholar 

  96. Pass RF, Fowler KB, Boppana SB, et al. Congenital cytomegalovirus infection following first trimester maternal infection: symptoms at birth and outcome. J Clin Virol. 2006;35:216–20.

    PubMed  Google Scholar 

  97. Liesnard C, Donner C, Brancart F, et al. Prenatal diagnosis of congenital cytomegalovirus infection: prospective study of 237 pregnancies at risk. Obstet Gynecol. 2000;95:881–8.

    PubMed  CAS  Google Scholar 

  98. Foulon I, Naessens A, Foulon W, et al. Hearing loss in children with congenital cytomegalovirus infection in relation to the maternal trimester in which the maternal primary infection occurred. Pediatrics. 2008;122:e1123–7.

    PubMed  Google Scholar 

  99. Mach M. Antibody-mediated neutralization of infectivity. In: Reddehase M, editor. Cytomegaloviruses, molecular biology and immunology. Norfolk: Caister Academic Press; 2006. p. 265–83.

    Google Scholar 

  100. Revello MG, Gerna G. Human cytomegalovirus tropism for endothelial/epithelial cells: scientific background and clinical implications. Rev Med Virol. 2010;20:136–55.

    PubMed  CAS  Google Scholar 

  101. Yeager AS, Grumet FC, Hafleigh EB, et al. Prevention of transfusion-acquired cytomegalovirus infections in newborn infants. J Pediatr. 1981;98:281–7.

    PubMed  CAS  Google Scholar 

  102. Snydman DR, Werner BG, Heinze-Lacey B, et al. Use of cytomegalovirus immune globulin to prevent cytomegalovirus disease in renal transplant recipients. N Engl J Med. 1987;317:1049–54.

    PubMed  CAS  Google Scholar 

  103. Fowler KB, Stagno S, Pass RF. Maternal immunity and prevention of congenital cytomegalovirus infection. JAMA. 2003;289:1008–11.

    PubMed  Google Scholar 

  104. Pass RF, Zhang C, Evans A, et al. Vaccine prevention of maternal cytomegalovirus infection. N Engl J Med. 2009;360:1191–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Griffiths PD, Stanton A, McCarrell E, et al. A randomized placebo controlled pharmacodynamic trial of cytomegalovirus glycoprotein B vaccine with MF59 adjuvant in transplant patients. Lancet. 2011;377:1256–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Bunde T, Kirchner A, Hoffmeister B, et al. Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J Exp Med. 2005;201:1031–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Elkington R, Walker S, Crough T, et al. Ex vivo profiling of CD8 + -T-cell responses to human cytomegalovirus reveals broad and multispecific reactivities in healthy virus carriers. J Virol. 2003;77:5226–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Gibson L, Piccinini G, Lilleri D, et al. Human cytomegalovirus proteins pp 65 and immediate early protein 1 are common targets for CD8+ T cell responses in children with congenital or postnatal human cytomegalovirus infection. J Immunol. 2004;172:2256–64.

    PubMed  CAS  Google Scholar 

  109. Nebbia G, Mattes FM, Smith C, et al. Polyfunctional cytomegalovirus-specific CD4+ and pp 65 CD8+ T cells protect against high-level replication after liver transplantation. Am J Transplant. 2008;8:2590–9.

    PubMed  CAS  Google Scholar 

  110. Tormo N, Solano C, Benet I, et al. Lack of prompt expansion of cytomegalovirus pp 65 and IE-1-specific IFNgamma CD8+ and CD4+ T cells is associated with rising levels of pp65 antigenemia and DNAemia during pre-emptive therapy in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2010;45:543–9.

    PubMed  CAS  Google Scholar 

  111. Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333:1038–44.

    PubMed  CAS  Google Scholar 

  112. Peggs KS, Verfuerth S, Pizzey A, et al. Cytomegalovirus-specific T cell immunotherapy promotes restoration of durable functional antiviral immunity following allogeneic stem cell transplantation. Clin Infect Dis. 2009;49:1851–60.

    PubMed  CAS  Google Scholar 

  113. Jonjic S, Bubic I, Krmpotic A. Innate immunity to cytomegaloviruses. In: Reddehase M, editor. Cytomegaloviruses, molecular biology and immunity. Norfolk: Caister Academic Press; 2006. p. 285–319.

    Google Scholar 

  114. Wilkinson GWG, Tomasec P, Stanton RJ, et al. Modulation of natural killer cells by human cytomegalovirus. J Clin Virol. 2008;41:206–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Jost S, Altfeld M. Control of human viral infections by natural killer cells. Annu Rev Immunol. 2013;31:163–94.

    PubMed  CAS  Google Scholar 

  116. Villard J. The role of natural killer cells in human solid organ and tissue transplantation. J Innate Immun. 2011;3:395–402.

    PubMed  Google Scholar 

  117. Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med. 1989;320:1731–5.

    PubMed  CAS  Google Scholar 

  118. Zimmermann A, Hengel H. Cytomegalovirus interference with interferons. In: Reddehase M, editor. Cytomegaloviruses, molecular biology and immunology. Norfolk: Caister Academic Press; 2006. p. 321–39.

    Google Scholar 

  119. Mocarski ESJ, Hahn G, White KL, et al. Myeloid cell recruitment and function in pathogenesis and latency. In: Reddehase M, editor. Cytomegaloviruses, molecular biology and immunology. Norfolk: Caister Academic Press; 2006. p. 465–81.

    Google Scholar 

  120. Griffiths PD, Baboonian C. A prospective study of primary cytomegalovirus infection during pregnancy: final report. Br J Obstet Gynaecol. 1984;91:307–15.

    PubMed  CAS  Google Scholar 

  121. Ziemann M, Unmack A, Steppat D, et al. The natural course of primary cytomegalovirus infection in blood donors. Vox Sang. 2010;99:24–33.

    PubMed  CAS  Google Scholar 

  122. Pass RF, Hutto C, Reynolds DW, et al. Increased frequency of cytomegalovirus in children in group day care. Pediatrics. 1984;74:121–6.

    PubMed  CAS  Google Scholar 

  123. Adler SP. Cytomegalovirus transmission among children in day care, their mothers and caretakers. Pediatr Infect Dis J. 1988;7:279–85.

    PubMed  CAS  Google Scholar 

  124. Jordan MC, Rousseau WE, Stewart JA, et al. Spontaneous cytomegalovirus mononucleosis: clinical and laboratory observations in nine cases. Ann Intern Med. 1973;79:153–60.

    PubMed  CAS  Google Scholar 

  125. Horwitz CA, Henle W, Henle G, et al. Clinical and laboratory evaluation of cytomegalovirus-induced mononucleosis in previously healthy individuals. Report of 82 cases. Medicine. 1986;65:124–34.

    PubMed  CAS  Google Scholar 

  126. Faucher JF, Abraham B, Segondy M, et al. Cytomégalovirose acquise de l’adulte immunocompétent: 116 observations. Presse Med. 1998;27:1774–9.

    PubMed  CAS  Google Scholar 

  127. Wreghitt TG, Teare EL, Sule O, et al. Cytomegalovirus infection in immunocompetent patients. Clin Infect Dis. 2003;37:1603–6.

    PubMed  CAS  Google Scholar 

  128. Pannuti CS, Boas LSV, Angelo MJO, et al. Cytomegalovirus mononucleosis in children and adults: differences in clinical presentation. Scand J Infect Dis. 1985;17:153–6.

    PubMed  CAS  Google Scholar 

  129. Eddleston M, Peacock S, Juniper M, et al. Severe cytomegalovirus infection in immunocompetent patients. Clin Infect Dis. 1997;24:52–6.

    PubMed  CAS  Google Scholar 

  130. Laing RBS, Dykhuizen RS, Smith CC, et al. Parenteral ganciclovir treatment of acute CMV infection in the immunocompetent host. Infection. 1997;25:44–6.

    PubMed  CAS  Google Scholar 

  131. Pass RF, Stagno S, Dworsky ME, et al. Excretion of cytomegalovirus in mothers: observation after delivery of congenitally infected and normal infants. J Infect Dis. 1982;146:1–6.

    PubMed  CAS  Google Scholar 

  132. Revello MG, Zavattoni M, Sarasini A, et al. Human cytomegalovirus in blood of immunocompetent persons during primary infection: prognostic implications for pregnancy. J Infect Dis. 1998;177:1170–5.

    PubMed  CAS  Google Scholar 

  133. Zanghellini F, Boppana SB, Emery VC, et al. Asymptomatic primary cytomegalovirus infection: virologic and immunologic features. J Infect Dis. 1999;180:702–7.

    PubMed  CAS  Google Scholar 

  134. Pass RF, Hutto C. Group day care and cytomegaloviral infections of mothers and children. Rev Infect Dis. 1986;8:599–605.

    PubMed  CAS  Google Scholar 

  135. Noyola DE, Demmler GJ, Williamson WD, et al. Cytomegalovirus urinary excretion and long term outcome in children with congenital cytomegalovirus infection. congenital CMV longitudinal study group. Pediatr Infect Dis J. 2000;19:505–10.

    PubMed  CAS  Google Scholar 

  136. Istas AS, Demmler GJ, Dobbins JG, et al. Surveillance for congenital cytomegalovirus disease: a report from the national congenital cytomegalovirus disease registry. Clin Infect Dis. 1995;20:665–70.

    PubMed  CAS  Google Scholar 

  137. Boppana SB, Pass RF, Britt WJ, et al. Symptomatic congenital cytomegalovirus infection: neonatal morbidity and mortality. Pediatr Infect Dis J. 1992;11:93–9.

    PubMed  CAS  Google Scholar 

  138. Bale JF, Blackman JA, Sato Y. Outcome in children with symptomatic congenital cytomegalovirus infection. J Child Neurol. 1990;5:131–6.

    PubMed  Google Scholar 

  139. Ancora G, Lanari M, Lazzarotto T, et al. Cranial ultrasound scanning and prediction of outcome in newborns with congenital cytomegalovirus infection. J Pediatr. 2007;150:157–61.

    PubMed  Google Scholar 

  140. Williamson WD, Percy AK, Yow MD, et al. Asymptomatic congenital cytomegalovirus infection. Audiologic, neuroradiologic, and neurodevelopmental abnormalities during the first year. Am J Dis Child. 1990;144:1365–8.

    PubMed  CAS  Google Scholar 

  141. Ivarsson SA, Lernmark B, Svanberg L. Ten-year clinical, developmental and intellectual follow-up of children with congenital cytomegalovirus infection without neurologic symptoms at one year of age. Pediatrics. 1997;99:800–3.

    PubMed  CAS  Google Scholar 

  142. Dahle AJ, Fowler KB, Wright JD, et al. Longitudinal investigation of hearing disorders in children with congenital cytomegalovirus. J Am Acad Audiol. 2000;11:283–90.

    PubMed  CAS  Google Scholar 

  143. Hamele M, Flanagan R, Loomis A, et al. Severe morbidity and mortality with breast milk associated cytomegalovirus infection. Pediatr Infect Dis. 2009;29:84–6.

    Google Scholar 

  144. Paryani SG, Yeager AS, Hosford-Dunn H, et al. Sequelae of acquired cytomegalovirus infection in premature and sick term infants. J Pediatr. 1985;107:451–6.

    PubMed  CAS  Google Scholar 

  145. Vollmer B, Seibold-Weiger K, Schmitz-Salue C, et al. Postnatally acquired cytomegalovirus infection via breast milk: effects on hearing and development in preterm infants. Pediatr Infect Dis J. 2004;23:322–7.

    PubMed  Google Scholar 

  146. Kurath S, Halwachs-Baumann G, Müller W, et al. Transmission of cytomegalovirus via breast milk to the prematurely born infant: a systematic review. Clin Microbiol Infect. 2010;16:1172–8.

    PubMed  CAS  Google Scholar 

  147. Bevot A, Hamprecht K, Krägeloh-Mann I, et al. Long-term outcome in preterm children with human cytomegalovirus infection transmitted via breast milk. Acta Paediatr. 2012;101:e167–72.

    PubMed  Google Scholar 

  148. Humar A, Snydman D. Cytomegalovirus in solid organ transplant recipients. Am J Transplant. 2009;9 Suppl 4:S78–86.

    PubMed  Google Scholar 

  149. Fisher RA. Cytomegalovirus infection and disease in the new era of immunosuppression following solid organ transplantation. Transpl Infect Dis. 2009;11:195–202.

    PubMed  CAS  Google Scholar 

  150. Lautenschlager I. CMV infection, diagnosis and antiviral strategies after liver transplantation. Transpl Int. 2009;22:1031–40.

    PubMed  Google Scholar 

  151. Eid AJ, Razonable RR. New developments in the management of cytomegalovirus infection after solid organ transplantation. Drugs. 2010;70:966–81.

    Google Scholar 

  152. Falagas MD, Arbo M, Ruthazer R, et al. Cytomegalovirus disease is associated with increased cost and hospital length of stay among orthotopic liver transplant recipients. Transplantation. 1997;63:1595–601.

    PubMed  CAS  Google Scholar 

  153. Mauskopf JA, Richter A, Annemans L, et al. Cost-effectiveness model of cytomegalovirus management strategies in renal transplantation. Comparing valaciclovir prophylaxis with current practice. Pharmacoeconomics. 2000;18:239–51.

    PubMed  CAS  Google Scholar 

  154. Henderson R, Carlin D, Kohlhase K, et al. Multicenter US study of hospital resource utilization associated with cytomegalovirus-related readmission of renal and heart transplant patients. Transpl Infect Dis. 2001;3(S2):57–9.

    PubMed  Google Scholar 

  155. Paya C. Economic impact of cytomegalovirus in solid organ transplantation. Transpl Infect Dis. 2001;3(S2):14–9.

    PubMed  Google Scholar 

  156. Kim WR, Badley AD, Wiesner RH, et al. The economic impact of cytomegalovirus infection after liver transplantation. Transplantation. 2000;69:357–61.

    PubMed  CAS  Google Scholar 

  157. Lowance D, Neumayer HH, Legendre CM, et al. Valacyclovir for the prevention of cytomegalovirus disease after renal transplantation. International Valacyclovir Cytomegalovirus Prophylaxis Transplantation Study Group. N Engl J Med. 1999;340:1462–70.

    PubMed  CAS  Google Scholar 

  158. Winston DJ, Ho WG, Champlin RE. Cytomegalovirus infections after bone marrow transplantation. Rev Infect Dis. 1990;12:S776–92.

    PubMed  Google Scholar 

  159. Ljungman P. Cytomegalovirus infections in transplant patients. Scand J Infect Dis. 1996;100:59–63.

    CAS  Google Scholar 

  160. Boeckh M, Nichols WG, Papanicolaou G, et al. Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol Blood Marrow Transplant. 2003;9:543–58.

    PubMed  Google Scholar 

  161. Boeckh M, Ljungman P. How I treat cytomegalovirus in hematopoietic cell transplant recipients. Blood. 2009;113:5711–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  162. Boeckh M, Leisenring W, Riddell SR, et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood. 2003;101:407–14.

    PubMed  CAS  Google Scholar 

  163. Gallant JE, Moore RD, Richman DD, et al. Incidence and natural history of cytomegalovirus disease in patients with advanced human immunodeficiency virus disease treated with zidovudine. J Infect Dis. 1992;166:1223–7.

    PubMed  CAS  Google Scholar 

  164. Cheung TW, Teich SA. Cytomegalovirus infection in patients with HIV infection. Mt Sinai J Med. 1999;66:113–24.

    PubMed  CAS  Google Scholar 

  165. Crumpacker CS, Zhang JL. Cytomegalovirus. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 1975–9.

    Google Scholar 

  166. Kovacs A, Schluchter M, Easley K, et al. Cytomegalovirus infection and HIV-1 disease progression in infants born to HIV-1-infected women. N Engl J Med. 1999;341:77–84.

    PubMed  CAS  Google Scholar 

  167. CDC. Guidelines for the prevention and treatment of opportunistic infections among HIV-exposed and HIV-infected children: Recommendations from CDC, the National Institutes of Health, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society and the American Academy of Pediatrics. MMWR Recomm Rep. 2009;58(RR-11):62–9.

    Google Scholar 

  168. Nesheim SR, Kapogiannis BG, Soe MM, et al. Trends in opportunistic infections in the pre-and post-highly active antiretroviral therapy eras among HIV-infected children in the Perinatal AIDS Collaborative Transmission Study, 1986-2004. Pediatrics. 2007;120:100–9.

    PubMed  Google Scholar 

  169. Mussi-Pinhata MM, Yamamoto AY, Figueiredo LT, et al. Congenital and perinatal cytomegalovirus infection in infants born to mothers infected with human immunodeficiency virus. J Pediatr. 1998;132:285–90.

    PubMed  CAS  Google Scholar 

  170. Grabriel MAM, Ibieta MF, Tomé MIG, et al. Infección congénita por citomegalovirus en hijos de madres infectadas por el VIH. An Pediatr (Barc). 2004;62:38–42.

    Google Scholar 

  171. Guibert G, Warszawski J, Le Chenadec J, et al. Decreased risk of congenital cytomegalovirus infection in children born to HIV-1-infected mothers in the era of highly active antiretroviral therapy. Clin Infect Dis. 2009;48:1516–25.

    PubMed  Google Scholar 

  172. Aoki FY, Hayden FG, Dolin R. Antiviral drugs (other than antiretrovirals). In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. 7th ed. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 565–610.

    Google Scholar 

  173. Kimberlin DW, Acosta EP, Sanchez PJ, et al. Pharmacokinetic and pharmacodynamic assessment of oral valganciclovir in the treatment of symptomatic congenital cytomegalovirus disease. J Infect Dis. 2008;197:836–45.

    PubMed  CAS  Google Scholar 

  174. Reusser P, Einsele H, Lee J, et al. Randomized multicenter trial of foscarnet versus ganciclovir for preemptive therapy of cytomegalovirus infection after allogeneic stem cell transplantation. Blood. 2002;99:1159–64.

    PubMed  CAS  Google Scholar 

  175. Cunha-Bang C, Kirkby N, Sonderholm M, et al. The time course of development and impact from viral resistance against ganciclovir in cytomegalovirus infection. Am J Transplant. 2013;13:458–66.

    PubMed  Google Scholar 

  176. Lurain NS, Chou S. Antiviral drug resistance of human cytomegalovirus. Clin Microbiol Rev. 2010;23:689–712.

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Kimberlin DW, Lin CY, Sanchez PJ, et al. Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized, controlled trial. J Pediatr. 2003;143:16–25.

    PubMed  CAS  Google Scholar 

  178. Oliver SE, Cloud GA, Sanchez PJ, et al. Neurodevelopmental outcomes following ganciclovir therapy in symptomatic congenital cytomegalovirus infections involving the central nervous system. J Clin Virol. 2009;46S:S22–6.

    Google Scholar 

  179. AAP. Cytomegalovirus infection. In: Pickering LK, Baker CJ, Kimberlin DW, Long SS, editors. Red Book: 2012 Report of the Committee on Infectious Diseases. 29th ed. Elk Grove Village: American Academy of Pediatrics; 2012. p. 300–4.

    Google Scholar 

  180. Short-term vs. long-term valganciclovir therapy for symptomatic congenital CMV infections 2014 [updated 12 Dec, 2013; cited April 30, 2014]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT00466817?term=NCT00466817&rank=1.

  181. CDC. Guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients: Recommendations of CDC, the Infectious Disease Society of America, and the American Society of Blood and Marrow Transplantation. MMWR Recomm Rep. 2000;49(RR-10):11–4.

    Google Scholar 

  182. Kotton CN, Kumar D, Caliendo AM, et al. International consensus guidelines on the management of cytomegalovirus in solid organ transplantation. Transplantation. 2010;89:779–95.

    PubMed  Google Scholar 

  183. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9 Suppl 3:S1–157.

    Google Scholar 

  184. CDC. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: Recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep. 2009;58(RR-4):55–60.

    Google Scholar 

  185. Johnson J, Anderson B, Pass RF. Prevention of maternal and congenital cytomegalovirus infection. Clin Obstet Gynecol. 2012;55:521–30.

    PubMed  PubMed Central  Google Scholar 

  186. Adler SP, Finney JW, Manganello AM, et al. Prevention of child-to-mother transmission of cytomegalovirus among pregnant women. J Pediatr. 2004;145:485–91.

    PubMed  Google Scholar 

  187. Velloup-Fellous C, Picone O, Cordier A-G, et al. Does hygiene counseling have an impact on the rate of CMV primary infection during pregnancy? Results of a 3-year prospective study in a French hospital. J Clin Virol. 2009;46S:S49–53.

    Google Scholar 

  188. ACOG. Perinatal viral and parasitic infections. Washington, DC: American College of Obstetricians and Gynecologists; 2000.

    Google Scholar 

  189. Coll O, Benoist G, Ville Y, et al. Guidelines on CMV congenital infection. J Perinat Med. 2009;37:433–55.

    PubMed  Google Scholar 

  190. Infection and Pregnancy – study group statement. Royal College of Obstetricians and Gynaecologists. (Accessed 20 Oct 2011, at http://www.rcog.org.uk/womens-health/clinical-guidance/infection-and-pregnancy-study-group-statement).

  191. SOGC. Cytomegalovirus infections in pregnancy. J Obstet Gynaecol Can. 2010;240:348–54.

    Google Scholar 

  192. Nigro G, Adler SP, La Torre R, et al. Passive immunization during pregnancy for congenital cytomegalovirus infection. N Engl J Med. 2005;353:1350–62.

    PubMed  CAS  Google Scholar 

  193. Visentin S, Manara R, Milanese L, et al. Early primary cytomegalovirus infection in pregnancy: maternal hyperimmunoglobulin therapy improves outcomes among infants at 1 year of age. Clin Infect Dis. 2012;55:497–503.

    PubMed  CAS  Google Scholar 

  194. Revello MG, Lazzarotto T, Guerra B, Spinillo A, Ferrazzi E, Kustermann A, et al. A randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. N Engl J Med. 2014;370(14):1316–26.

    Google Scholar 

  195. A randomized trial to prevent congenital cytomegalovirus (CMV) 2014 [updated November 13, 2013; cited 2014 April 30, 2014]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01376778?term=NCT01376778&rank=1.

  196. Gilbert GL, Hudson I, Hayes K, et al. Prevention of transfusion-acquired cytomegalovirus infection in infants by blood filtration to remove leucocytes. Lancet. 1989;1:1228–31.

    PubMed  CAS  Google Scholar 

  197. Nichols WG, Price TH, Gooley T, et al. Transfusion-transmitted cytomegalovirus infection after receipt of leukoreduced blood products. Blood. 2003;101:4195–200.

    PubMed  CAS  Google Scholar 

  198. Vamvakas EC. Is white blood cell reduction equivalent to antibody screening in preventing transmission of cytomegalovirus by transfusion? A review of the literature and meta-analysis. Transfus Med Rev. 2005;19:181–99.

    PubMed  Google Scholar 

  199. Smith D, Lu Q, Yuan S, et al. Survey of current practice for prevention of transfusion-transmitted cytomegalovirus in the United States: leucoreduction vs. cytomegalovirus-seronegative. Vox Sang. 2010;98:29–36.

    PubMed  CAS  Google Scholar 

  200. Lang DJ, Kummer JF. Cytomegalovirus in semen: observations in selected populations. J Infect Dis. 1975;132:472–3.

    PubMed  CAS  Google Scholar 

  201. Aynaud O, Poveda J-D, Huynh B, et al. Frequency of herpes simplex virus, cytomegalovirus and human papillomavirus DNA in semen. Int J STD AIDS. 2002;547:50.

    Google Scholar 

  202. Bresson JL, Clavequin MC, Mazeron MC, et al. Risk of cytomegalovirus transmission by cryopreserved semen: a study of 635 semen samples from 231 donors. Hum Reprod. 2003;18:1881–6.

    PubMed  CAS  Google Scholar 

  203. Neofytou E, Sourvinos G, Asmarianaki M, et al. Prevalence of human herpesvirus types 1-7 in the semen of men attending an infertility clinic and correlation with semen parameters. Fertil Steril. 2009;91:2487–94.

    PubMed  CAS  Google Scholar 

  204. Witz CA, Duan Y, Burns WN, et al. Is there a risk of cytomegalovirus transmission during in vitro fertilization with donated oocytes? Fertil Steril. 1999;71:302–7.

    PubMed  CAS  Google Scholar 

  205. Liesnard CA, Revelard P, Englert Y. Is matching between women and donors feasible to avoid cytomegalovirus infection in artificial insemination with donor semen? Hum Reprod. 1998;13(S2):25–31.

    PubMed  Google Scholar 

  206. FDA. What you should know - reproductive tissue donation 2014 [updated 1 Mar, 2011; cited 30 Apr, 2014]. Available from: http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/TissueSafety/ucm232876.htm.

  207. FDA. cleared donor screening tests for cytomegalovirus (CMV) 2014 [updated 29 July, 2013; cited 30 April, 2014]. Available from: http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/TissueSafety/ucm095440.htm#cmv.

  208. ASRM. American society for reproductive medicine recommendations for gamete and embryo donation: a committee opinion. Fertil Steril. 2013;99(1):47–62.

    Google Scholar 

  209. Balcarek KB, Bagley R, Cloud GA, et al. Cytomegalovirus infection among employees of a children’s hospital: no evidence for increased risk associated with patient care. JAMA. 1990;263:840–4.

    PubMed  CAS  Google Scholar 

  210. Bolyard EA, Tablan OC, Williams WW, et al. Guideline for infection control in health care personnel, 1998. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol. 1998;19:407–63.

    PubMed  CAS  Google Scholar 

  211. Stratton K, Durch J, Lawrence R. Vaccines for the 21st century: a tool for decisionmaking. Washington, DC: National Academy Press; 2001.

    Google Scholar 

  212. Plotkin SA, Friedman HM, Fleisher GR, et al. Towne-vaccine induced prevention of cytomegalovirus disease after renal transplants. Lancet. 1984;1:528–30.

    PubMed  CAS  Google Scholar 

  213. Adler SP, Starr SE, Plotkin SA, et al. Immunity induced by primary human cytomegalovirus infection protects against secondary infection among women of childbearing age. J Infect Dis. 1995;171:26–32.

    PubMed  CAS  Google Scholar 

  214. Kharfan-Dabaja MA, Boeckh M, Wilck MB, et al. A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomized, double-blind, placebo-controlled, phase 2 trial. Lancet. 2012;12(4):290–9.

    PubMed  CAS  Google Scholar 

  215. Sung H, Schleiss MR. Update on the current status of cytomegalovirus vaccines. Expert Rev Vaccines. 2010;9:1304–14.

    Google Scholar 

  216. Karrer U, Mekker A, Wanke K, et al. Cytomegalovirus and immune senescence: culprit or innocent bystander? Exp Gerontol. 2009;44:689–94.

    PubMed  CAS  Google Scholar 

  217. Pawelec G, Derhovanession E, Larbi A, et al. Cytomegalovirus and human immunosenescence. Rev Med Virol. 2009;19:47–56.

    PubMed  CAS  Google Scholar 

  218. Sylwester AW, Mitchell BL, Edgar JB, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005;202:673–85.

    PubMed  CAS  PubMed Central  Google Scholar 

  219. Derhovanessian E, Theeten H, Hahnel K, et al. Cytomegalovirus-associated accumulation of late-differentiated CD4 T-cells correlates with poor humoral response to influenza vaccination. Vaccine. 2013;31:685–90.

    PubMed  CAS  Google Scholar 

  220. McElhaney JE, Zhou X, Talbot HK, et al. The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities and frailty are a challenge for the development of more effective influenza vaccines. Vaccine. 2012;30:2060–7.

    PubMed  PubMed Central  Google Scholar 

  221. Bentz GL, Yurochko AD. Human CMV infection of endothelial cells induces an angiogenic response through viral binding to EGF receptor and β1 and β3 integrins. Proc Natl Acad Sci U S A. 2008;105:5531–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  222. Caposio P, Orloff SL, Streblow DN. The role of cytomegalovirus in angiogenesis. Virus Res. 2011;157:204–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  223. Grahame-Clarke C, Chan NN, Andrew D, et al. Human cytomegalovirus seropositivity is associated with impaired vascular function. Circulation. 2003;108:678–83.

    PubMed  Google Scholar 

  224. Ridker PM, Hennekens CH, Stampfer MJ, et al. Prospective study of herpes simplex virus, cytomegalovirus, and the risk of future myocardial infarction and stroke. Circulation. 1998;98:2796–9.

    PubMed  CAS  Google Scholar 

  225. Mayr M, Kiechl S, Willeit J, et al. Infections, immunity and atherosclerosis, associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation. 2000;102:833–9.

    PubMed  CAS  Google Scholar 

  226. Rider JR, Ollier WE, Lock RJ, et al. Human cytomegalovirus infection and systemic lupus erythematosus. Clin Exp Rheumatol. 1997;15:405–9.

    PubMed  CAS  Google Scholar 

  227. Neidhart M, Kuchen S, Distler O, et al. Increased serum levels of antibodies against human cytomegalovirus and prevalence of autoantibodies in systemic sclerosis. Arthritis Rheum. 1999;42:389–92.

    PubMed  CAS  Google Scholar 

  228. Sekigawa I, Nawata M, Seta N, et al. Cytomegalovirus infection in patients with systemic lupus erythematosus. Clin Exp Rheumatol. 2002;20:559–64.

    PubMed  CAS  Google Scholar 

  229. Lunardi C, Dolcino M, Peterlana D, et al. Antibodies against human cytomegalovirus in the pathogenesis of systemic sclerosis: a gene array approach. PLoS Med. 2006;3:e2.

    PubMed  PubMed Central  Google Scholar 

  230. Pak CY, Eun HM, McArthur RG, et al. Association of cytomegalovirus infection with autoimmune type 1 diabetes. Lancet. 1988;2:1–4.

    PubMed  CAS  Google Scholar 

  231. Tsai WP, Chen MH, Lee MH, et al. Cytomegalovirus infection causes morbidity and mortality in patients with autoimmune diseases, particularly systemic lupus: in a Chinese population in Taiwan. Rheumatol Int. 2012;32:2901–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Pass MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pass, R.F. (2014). Human Herpesviruses: Cytomegalovirus . In: Kaslow, R., Stanberry, L., Le Duc, J. (eds) Viral Infections of Humans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7448-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7448-8_35

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7447-1

  • Online ISBN: 978-1-4899-7448-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics