Skip to main content

A Combination of the Sequential QM/MM and the Free Energy Gradient Methodologies with Applications

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry III

Abstract

To obtain stable states (SS) and transition states (TS) in chemical reactions in condensed phase, the free energy gradient (FEG) method was proposed in 1998 as an optimization method on a multidimensional free energy surface (FES). Analogous to the method for the Born Oppenheimer potential energy surface (PES) using ab initio molecular orbital calculation, the FEG method utilizes the force and Hessian on the FES, which can be adiabatically calculated by molecular dynamics (MD) or Monte Carlo (MC) methods, and, originally, the free energy (FE) perturbation theory. In fact, since then, a number of excellent approximate methods have been developed, e.g., the averaged solvent electrostatic potential (ASEP)/MD method and the average solvent electrostatic configuration (ASEC) method. In this chapter, the FEG methodology is reviewed in general and a future perspective to explore the FE landscape is introduced together with several applications of these methods. Based on computational demands and on the numerical accuracy, we believe that a family of the FEG methodologies should become more efficient as one strategic setting and will play promising and important roles to survey condensed state chemistry on the basis of recent supercomputing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Okuyama-Yoshida N, Nagaoka M, Yamabe T (1998) Int J Quantum Chem 70:95 (b) Nagaoka M, Okuyama-Yoshida N, Yamabe T (1998) J Phys Chem A 102:8202 (c) Okuyama-Yoshida N, Nagaoka M, Yamabe T (1998) J Phys Chem A 102: 282

    Google Scholar 

  2. (a) Okuyama-Yoshida N, Kataoka K, Nagaoka M, Yamabe T (2000) J Chem Phys 113:3519 (b) Hirao H, Nagae Y, Nagaoka M (2001) Chem Phys Lett 348:350

    Google Scholar 

  3. (a) Nagae Y, Oishi Y, Naruse N, Nagaoka M (2003) J Chem Phys 110:4555 (b) Nagaoka M, Nagae Y, Koyano Y, Oishi Y (2006) J Phys Chem A 110:4555

    Google Scholar 

  4. (a) Koyano Y, Takenaka N, Nakagawa Y, Nagaoka M (2010) Bull Chem Soc Jpn 83:486 (b) Takenaka N, Kitamura Y, Koyano Y, Asada T, Nagaoka M (2011) Theor Chem Acc 130:215

    Google Scholar 

  5. Malaspina T, Coutinho K, Canuto S (2002) J Chem Phys 117:1692

    Article  CAS  Google Scholar 

  6. Coutinho K, Rivelino R, Georg HC, Canuto S (2008) In: Canuto S (ed) Solvation effects in molecules and biomolecules. Challenges and advances in computational chemistry and physics, vol 6. Springer, London, pp 159–189

    Chapter  Google Scholar 

  7. Georg HC, Coutinho K, Canuto S (2006) Chem Phys Lett 429:119

    Article  CAS  Google Scholar 

  8. Georg HC, Coutinho K, Canuto S (2007) J Chem Phys 126:034507

    Article  Google Scholar 

  9. (a) Fukui K (1981) Acc Chem Res 14:363 (b) Fukui K (1982) Angew Chem Int Ed 21:801

    Google Scholar 

  10. (a) Warshel A, Levitt M (1976) J Mol Biol 103:227 (b) Singh UC, Kollman PA (1986) J Comput Chem 7:718 (c) Field MJ, Bash PA, Karplus MA (1990) J Comput Chem 11:700

    Google Scholar 

  11. Luque FJ, Reuter N, Cartier A, Ruiz-López MF (2000) J Phys Chem A 104:10923

    Article  CAS  Google Scholar 

  12. (a) Okamoto T, Yamada K, Koyano Y, Asada T, Koga N, Nagaoka M (2011) J Comput Chem 32:932 (b) Okamoto T, Ishikawa T, Koyano Y, Yamamoto N, Kuwata K, Nagaoka M (2013) Bull Chem Soc Jpn 86:210

    Google Scholar 

  13. Yamada K, Koyano Y, Okamoto T, Asada T, Koga N, Nagaoka M (2011) J Comput Chem 32:3092

    Article  CAS  Google Scholar 

  14. Sanchez ML, Aguilar MA, Olivares del Valle FJ (1997) J Comput Chem 18:313

    Article  CAS  Google Scholar 

  15. Martin ME, Sánchez ML, Olivares del Valle FJ, Aguilar MA (2002) J Chem Phys 116:1613

    Article  CAS  Google Scholar 

  16. Galván IF, Sánchez ML, Martín ME, Olivares del Valle FJ, Aguilar MA (2003) J Chem Phys 118:255

    Article  Google Scholar 

  17. Coutinho K, Georg HC, Fonseca TL, Ludwig V, Canuto S (2007) Chem Phys Lett 437:148

    Article  CAS  Google Scholar 

  18. Georg HC, Canuto S (2012) J Phys Chem B 116:11247

    Article  CAS  Google Scholar 

  19. Matubayasi N, Nakahara M (2000) J Chem Phys 113:6070

    Article  CAS  Google Scholar 

  20. Matubayasi N, Nakahara M (2002) J Chem Phys 117:3605

    Article  CAS  Google Scholar 

  21. Impey RW, Klein ML (1984) Chem Phys Lett 104:579

    Article  CAS  Google Scholar 

  22. Gao J, Xia X, George TF (1993) J Phys Chem 97:9241

    Article  CAS  Google Scholar 

  23. Keal TW, Helgaker T, Salek P, Tozer DJ (2006) Chem Phys Lett 425:163

    Article  CAS  Google Scholar 

  24. Provasi PF, Aucar GA, Sauer SPA (2001) J Chem Phys 115:1324

    Article  CAS  Google Scholar 

  25. Jensen F (2006) J Chem Theory Comput 2:1360

    Article  CAS  Google Scholar 

  26. (a) Bernheim RA, Batiz-Hernandez H (1964) J Chem Phys 40:3446 (b) Alei Jr M, Florin AE, Litchman WM, O’Brien JF (1971) J Phys Chem 75:932 (c) Litchman WM, Alei Jr M, Florin AE (1969) J Chem Phys 50:1897 (d) Jameson CJ, Jameson AK, Cohen SM, Parker H, Oppusunggu D, Burrel PM, Wille S (1981) J Chem Phys 74:1608

    Google Scholar 

  27. Gester RM, Georg HC, Canuto S, Caputo MC, Provasi PF (2009) J Phys Chem A 113:14936

    Article  CAS  Google Scholar 

  28. Moriarty NW, Karlström G (1997) J Chem Phys 106:6470

    Article  CAS  Google Scholar 

  29. (a) Ichikawa K, Kameda Y, Yamaguchi T, Wakita H, Misawa M (1991) Mol Phys 73:79 (b) Lide DR (ed) (2007) CRC handbook of chemistry and physics, 87th edn. Taylor and Francis, Boca Raton (c) Benedict WS, Gailar N, Plyler EK (1956) J Chem Phys 24:1139

    Google Scholar 

  30. Chalmet S, Ruiz-Lopez MS (2001) J Chem Phys 115:5220

    Article  CAS  Google Scholar 

  31. Tu Y, Laaksonen A (2000) Chem Phys Lett 329:283

    Article  CAS  Google Scholar 

  32. Guedes RC, Coutinho K, Cabral BJC, Canuto S (2003) Chem Phys Lett 369:345

    Google Scholar 

  33. Wasylischen RE, Friedrich JO (1987) Can J Chem 65:2238

    Article  Google Scholar 

  34. Burnett LJ, Zeltmann AH (1974) J Chem Phys 60:4636

    Article  CAS  Google Scholar 

  35. Hermida-Ramón JM, Öhrn A, Karlström G (2007) J Phys Chem B 111:11511

    Article  Google Scholar 

  36. Godfrey PD, Brown RD, Hunter AN (1997) J Mol Struct 413–414:405

    Article  Google Scholar 

  37. Merrick JP (2007) J Phys Chem A 111:11683

    Article  CAS  Google Scholar 

  38. Foresman JB, Frisch AE (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc., Pittsburgh

    Google Scholar 

  39. Hermansson K (1993) J Chem Phys 99:861

    Article  CAS  Google Scholar 

  40. Benedict WS, Gailar N, Plyler EK (1956) J Chem Phys 24:1139

    Article  CAS  Google Scholar 

  41. Ford TA, Falk M (1968) Can J Chem 46:3579

    Article  CAS  Google Scholar 

  42. Bertie JE, Lan Z (1996) Appl Spectrosc 50:1047

    Article  CAS  Google Scholar 

  43. Nagaoka M, Yu I, Takayanagi M (2009) In: Leitner DM, Straub JE (eds) Proteins: energy, heat and signal flow, Computation in chemistry. CRC Press, Boca Raton, pp 149–196

    Google Scholar 

  44. Kitamura Y, Takenaka N, Koyano Y, Nagaoka M, J Chem Phys, submitted for publication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Canuto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Georg, H.C., Fernandes, T.S., Canuto, S., Takenaka, N., Kitamura, Y., Nagaoka, M. (2014). A Combination of the Sequential QM/MM and the Free Energy Gradient Methodologies with Applications. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry III. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7445-7_8

Download citation

Publish with us

Policies and ethics