Skip to main content

Modelability Criteria: Statistical Characteristics Estimating Feasibility to Build Predictive QSAR Models for a Dataset

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry III

Abstract

It is not always possible to build predictive Quantitative Structure-Activity Relationships (QSAR) models for a given chemical dataset. In this work, we propose several statistical criteria, which can with high confidence answer a question, whether it is possible to build a predictive model for a dataset prior to actual modeling, i.e. to establish, whether the dataset is modelable. Calculation of these criteria is fast, and using them in QSAR studies could dramatically reduce modelers’ time and efforts, as well as computational resources necessary to build QSAR models for at least some datasets, especially for those which are not modelable. The calculation of modelability criteria is based on the k-nearest neighbors approach. For all datasets, as modelability criteria we have proposed dataset diversity (MODI_DIV) and new activity cliff indices (MODI_ACI). For datasets with binary end points, as modelability criteria we have proposed the correct classification rate (MODI_CCR) CCR = 0.5(sensitivity + specificity) for leave-one-out (LOO) cross-validation in the entire descriptor space, and correct classification rate for similarity search (MODI_ssCCR) in the entire descriptor space with leave 20 %-out (five-fold) cross-validation. For binary datasets, all these modelability criteria were tested on 42 datasets with previously generated QSAR models. Two latter criteria (MODI_CCR and MODI_ssCCR) were found to have high correlation with the predictivity of QSAR models (QSAR_CCR) and were additionally tested on 60 ToxCast end points with QSAR modeling results published recently (Thomas RS, Black MB, Li L, Healy E, Chu T-M, Bao W, Andersen MD, Wolfinger RD. Toxicol Sci: Off JSoc Toxicol 128(2):398–417, 2012). These modelability criteria can be used to classify many datasets as modelable or non-modelable. These criteria can be generalized to datasets with compounds belonging to more than two categories or classes. Additionally, criteria which take into account errors of prediction MODI_CAT i and MODI_CLASS i were proposed for datasets with compounds belonging to more than two (i > 2) categories or classes and continuous end points, divided into i > 2 bins. For continuous end points, LOO cross-validation q 2 for similarity search with different numbers of nearest neighbors in the entire descriptor space (MODI_q 2), and similarity search coefficient of determination (MODI_ssR 2) in the entire descriptor space were proposed as modelability criteria. Our preliminary studies demonstrated high correlation between the external predictivity of QSAR models (QSAR_R 2) and each of the MODI_q 2 and MODI_ssR 2. On the other hand, for datasets with any binary or continuous response variable, MODI_DIVs and MODI_ACIs were found to be less useful to establish dataset modelability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dragon Descriptors. http://www.talete.mi.it/products/dragon_description.htm. Accessed 21 Aug 2012

  2. Molecular Operating Environment (MOE). http://www.chemcomp.com/software.htm. Accessed 21 Aug 2012

  3. Molconn-Z descriptors. http://www.edusoft-lc.com/molconn. Accessed 08 Sept 2013

  4. Mold2 descriptors. http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm. Accessed 08 Sept 2013

  5. CDK Descriptor Calculator. http://pele.farmbio.uu.se/nightly/dnames.html. Accessed 08 Sept 2013

  6. Volsurf Descriptors. http://www.moldiscovery.com/soft_volsurf.php. Accessed 08 Sept 2013

  7. Adriana Descriptors. http://molecular-networks.com/node/45. Accessed 08 Sept 2013

  8. Martin TM, Harten P, Venkatapathy R, Das S, Young DM (2008) A hierarchical clustering methodology for the estimation of toxicity. Toxicol Mech Method 18(2–3):251–266

    Article  CAS  Google Scholar 

  9. Kuz’min VE, Artemenko AG, Muratov EN (2008) Hierarchical QSAR technology based on the simplex representation of molecular structure. J Comput Aided Mol Des 22(6–7):403–421

    Article  Google Scholar 

  10. Isida Fragments. http://infochim.u-strasbg.fr/recherche/Download/FragmentorNomenclature_of_ISIDA_fragments_2011.pdf. Accessed 08 Sept 2013

  11. Adams MJ (2004) Chemometrics in analytical spectroscopy. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  12. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometrics Intel Lab Syst 58(2):109–130

    Article  CAS  Google Scholar 

  13. Zheng W, Tropsha A (2000) Novel variable selection quantitative structure–property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci 40(1):185–194

    Article  CAS  Google Scholar 

  14. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  15. Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106

    Google Scholar 

  16. Breiman L, Friedman JH, Olshen RA, Stone CJ (1998) Classification and regression trees. Chapman & Hall/CRC, New York

    Google Scholar 

  17. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  18. Breiman L, Cutler A. Random forests. http://www.stat.berkeley.edu/~breiman/andomForests/. Accessed 08 Sept 2013

  19. Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51(9):2320–2335

    Article  CAS  Google Scholar 

  20. Chirico N, Gramatica P (2012) Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J Chem Inf Model 52(8):2044–2058

    Article  CAS  Google Scholar 

  21. Kovatcheva A, Golbraikh A, Oloff S, Feng J, Zheng W, Tropsha A (2005) QSAR modeling of datasets with enantioselective compounds using chirality sensitive molecular descriptors. SAR QSAR Environ Res 16(1–2):93–102

    Article  CAS  Google Scholar 

  22. Tropsha A, Golbraikh A (2010) Predictive quantitative structure–activity relationships modeling: development and validation of QSAR models. In: Faulon J-L, Bender A (eds) Handbook of chemoinformatics algorithms. Chapman & Hall/CRC, London, pp 213–233

    Google Scholar 

  23. Kovatcheva A, Golbraikh A, Oloff S, Xiao Y-D, Zheng W, Wolschann P, Buchbauer G, Tropsha A (2004) Combinatorial QSAR of ambergris fragrance compounds. J Chem Inf Comput Sci 44(2):582–595

    Article  CAS  Google Scholar 

  24. de Cerqueira Lima P, Golbraikh A, Oloff S, Xiao Y-D, Tropsha A (2006) Combinatorial QSAR modeling of P-glycoprotein substrates. J Chem Inf Model 46(3):1245–1254

    Article  Google Scholar 

  25. ToxCastTM. http://epa.gov/ncct/toxcast. Accessed 11 Jan 2012

  26. U.E.-N.C. for C. Toxicology, Computational Toxicology Research Program (CompTox). http://www.epa.gov/ncct/toxrefdb/. Accessed 08 Sept 2013

  27. Thomas RS, Black MB, Li L, Healy E, Chu T-M, Bao W, Andersen MD, Wolfinger RD (2012) A comprehensive statistical analysis of predicting in vivo hazard using high-throughput in vitro screening. Toxicol Sci: Off J Soc Toxicol 128(2):398–417

    Article  CAS  Google Scholar 

  28. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  CAS  Google Scholar 

  29. Shen M, LeTiran A, Xiao Y-D, Golbraikh A, Kohn H, Tropsha A (2002) Quantitative structure-activity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbor and simulated annealing PLS methods. J Med Chem 45(13):2811–2823

    Article  CAS  Google Scholar 

  30. Goret M, Wang-Bell M, Golbraikh A, Tropsha A (2006) QSAR analysis of a dataset of 91 functionalized amino acids anticonvulsant agents using k nearest neighbor. Unpublished results

    Google Scholar 

  31. Boyd WA, McBride SJ, Rice JR, Snyder DW, Freedman JH (2010) A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol Appl Pharmacol 245(2):153–159

    Article  CAS  Google Scholar 

  32. Sedykh A, Zhu H, Tang H, Zhang L, Richard A, Rusyn I, Tropsha A (2011) Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Environ Health Persp 119(3):364–370

    Article  CAS  Google Scholar 

  33. Tropsha A, Golbraikh A (2007) Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 13(34):3494–3504

    Article  CAS  Google Scholar 

  34. Golbraikh A (2000) Molecular dataset diversity indices and their applications to comparison of chemical databases and QSAR analysis. J Chem Inf Comput Sci 40(2):414–425

    Article  CAS  Google Scholar 

  35. Fourches D, Muratov E, Tropsha A (2010) Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50(7):1189–1204

    Article  CAS  Google Scholar 

  36. Guha R, Van Drie JH (2008) Structure–activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Model 48(3):646–658

    Article  CAS  Google Scholar 

  37. Zhang L, Sedykh A, Tripathi A, Zhu H, Afantitis A, Mouchlis VD, Melagraki G, Rusyn I, Tropsha A (2013) Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using qsar- and structure-based virtual screening approaches. Toxicol Appl Pharmacol 23. doi:pii: S0041-008X(13)00216-0. 10.1016/j.taap.2013.04.032. Epub ahead of print

  38. ChemBL databases. https://www.ebi.ac.uk/chembl/. Accessed 08 Sept 2013

  39. PDSP database. http://pdsp.med.unc.edu/indexR.html. Accessed 08 Sept 2013

  40. USEPA ECOTOX database (2008). http://cfpub.epa.gov/ecotox. Accessed 08 Sept 2013

  41. U.E.-N.C. for C. Toxicology, Computational Toxicology Research Program (CompTox). http://www.epa.gov/ncct/toxcast/. Accessed 08 Sept 2013

  42. CDK Descriptor Names. http://pele.farmbio.uu.se/nightly/dnames.html. Accessed 08 Sept 2013

  43. R: Classification and Regression with Random Forest. http://rss.acs.unt.edu/Rdoc/library/randomForest/html/randomForest.html. 08 Sept 2013

  44. Polishchuk PG, Muratov EN, Artemenko AG, Kolumbin OG, Muratov NN, Kuz’min VE (2009) Application of random forest approach to QSAR prediction of aquatic toxicity. J Chem Inf Model 49(11):2481–2488

    Article  CAS  Google Scholar 

  45. Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatica P, Ӧberg T, Phuong D, Cherkasov A, Tetko IV (2008) Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J Chem Inf Model 48(4):766–784

    Article  CAS  Google Scholar 

  46. Schultz TW (1997) TETRATOX: Tetrahymena pyriformis population growth impairment endpoint – a surrogate for fish lethality read more. http://informahealthcare.com/doi/abs/10.1080/105172397243079. Toxicol Mech Method 7(4):289–309

  47. Schultz TW, Netzeva TI (2004) Development and evaluation of QSARs for ecotoxic endpoints: the benzene response-surface model for Tetrahymena toxicity. In: Cronin MTD, Livingstone DJ (eds) Modeling environmental fate and toxicity. CRC Press, Boca Raton

    Google Scholar 

  48. Schultz TW, TETRATOX. http://www.vet.utk.edu/TETRATOX/index.php. Accessed 08 June 2013

  49. ChemiDplus Advanced Database National Library of Medicine 2011 (NLM). http://chem.sis.nlm.nih.gov/chemidplus/. Accessed 24 Feb 2011

  50. USEPA, User’s Guide for T.E.S.T. (Toxicity Estimation Software Tool). http://www.epa.gov/ORD/NRMRL/std/cppb/qsar/testuserguide.pdf. Accessed 27 Oct 2009

  51. Zhu H, Martin TM, Ye L, Sedykh A, Young DM, Tropsha A (2009) Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure. Chem Res Toxicol 22(12):1913–1921

    Article  CAS  Google Scholar 

  52. Zhu H, Ye L, Richard A, Golbraikh A, Wright FA, Rusyn I, Tropsha A (2009) A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents. Environ Health Persp 117(8):1257–1264

    Article  CAS  Google Scholar 

  53. Martin TM, Harten P, Young DM, Muratov EN, Golbraikh A, Zhu H, Tropsha A (2012) Does rational selection of training and test sets improve the outcome of QSAR modeling? J Chem Inf Model 52(10):2570–2578

    Article  CAS  Google Scholar 

  54. Hamelink JL (1977) Current bioconcentration test methods and theory. In: Mayer FL, Hamelink JL (eds) Aquatic toxicology and hazard evaluation. ASTM STP 634, American Society for Testing and Materials, Baltimore, pp 149–161

    Google Scholar 

  55. OEHHA Toxicity Criteria Database. http://www.oehha.ca.gov/risk/ChemicalDB/index.asp. Accessed 08 May 2013

  56. Regional Screening Levels | Region 9: Superfund | US EPA. http://www.epa.gov/region9/superfund/prg/. Accessed 08 May 2013

  57. O. US EPA, Integrated Risk Information System (IRIS). http://www.epa.gov/iris/. Accessed 08 May 2013

  58. O. of P.P. US EPA, Pesticide Reregistration Status | Pesticides | US EPA. http://www.epa.gov/oppsrrd1/reregistration/status.htm. Accessed 08 May 2013

  59. Pharmaceutical Press. Martindale: the complete drug reference, 37th edn. http://www.pharmpress.com/product/9780853699330/martindale. Accessed 08 July 2013

  60. U.E.-N.C. for C. Toxicology, Computational Toxicology Research Program (CompTox). http://www.epa.gov/ncct/dsstox/sdf_fdamdd.html. Accessed 08 Sept 2013

  61. Tang H, Wang XS, Huang X-P, Roth X-P, Butler KV, Kozikowski AP, Jung M, Tropsha A (2009) Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. J Chem Inf Model 49(2):461–476

    Article  CAS  Google Scholar 

  62. Kennard RW, Stone L (1969) Computer aided design of experiments. Technometrics 11(1):137–148

    Article  Google Scholar 

  63. Golbraikh A, Shen M, Xiao Z, Xiao Y-D, Lee K-H, Tropsha A (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17(2–4):241–253

    Article  CAS  Google Scholar 

  64. Kuz’min VE, Artemenko AG, Muratov EN, Volineckaya IL, Makarov VA, Riabova OB, Wutzler P, Schmidtke M (2007) Quantitative structure-activity relationship studies of [(biphenyloxy)propyl]isoxazole derivatives. Inhibitors of human rhinovirus 2 replication. J Med Chem 50(17):4205–4213

    Article  Google Scholar 

  65. Golbraikh A, Muratov E, Fourches D, Tropsha A. Data set modelability by QSAR. J Chem Inf Model. 8 Jan 2014 [Epub ahead of print]

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Guiyu Zhao (AstraZeneca, Shanghai, China) for providing QSAR modeling results for 34 GPCRome datasets, Dr. Jessica Wignall (University of North Carolina at Chapel Hill) for providing the QSAR modeling results for 10 regulatory information datasets, and Dr. Jonathan Freedman (National Institute of Environmental Health Science, Research Triangle Park, NC) and Dr. Ruchir Shah (SciOme, LLC, Research Triangle Park, NC) for providing experimental results for C. Elegans datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Tropsha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Golbraikh, A., Fourches, D., Sedykh, A., Muratov, E., Liepina, I., Tropsha, A. (2014). Modelability Criteria: Statistical Characteristics Estimating Feasibility to Build Predictive QSAR Models for a Dataset. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry III. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7445-7_7

Download citation

Publish with us

Policies and ethics