Skip to main content

Intrinsic Magnetism in Single-Walled Carbon Nanotubes of Finite Length

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry III

Abstract

The magnetic properties of axially confined hydrogenated single-walled carbon nanotubes (SWCNTs) of the (n, 0) type, as well as cross-linking architectures based on these units, are systematically explored by use of density functional theory. Emphasis is placed on the relation between the ground state magnetic moments of SWCNTs and zigzag graphene nanoribbons (ZGNRs). Comparison between SWCNTs with n = 5–24 and ZGNRs of equal length gives rise to two basic questions: (1) how does the nanotube curvature affect the antiferromagnetic order known to prevail in ZGNRs, and (2) to what extent do the magnetic moments localized at the SWCNT edges deviate from the zero-curvature limit n/3 μB? The studies on single SWCNTs are extended to cross-linking carbon nanotubes (CLCNTs) composed of three axially confined single-walled carbon nanotubes (SWCNTs) of the (10,0) type. Three CLCNT models, differing from each other by the structure of the contact regions of the three SWCNT constituents, are explored in terms of their geometric, electronic, and magnetic properties. Various magnetic phases, as obtained by combining finite SWCNTs in ferromagnetic (FM) or antiferromagnetic (AFM) coordination, are distinguished. The characteristics of these phases are shown to depend on the contact region geometry which plays an essential role in defining the order of their stabilities. Prospects of applying either of the two systems analyzed here, SWCNTs and CLCNTs, as transmission elements in spintronics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolskar AD, Alford JM, Benedetto RF, Husebo LO, Price RE, Jackson EF, Wallace S, Wilson IJ (2003) J Am Chem Soc 125:5471

    Article  CAS  Google Scholar 

  2. Iezzi EB, Duchamp JC, Fletcher KR, Glas TE, Dorn HC (2002) Nano Lett 2:1187

    Article  CAS  Google Scholar 

  3. Maassen J, Ji W, Guo H (2011) Nano Lett 11:151

    Article  CAS  Google Scholar 

  4. Kan E, Li Z, Yang J, Hou JG (2008) J Am Chem Soc 130:4224

    Article  CAS  Google Scholar 

  5. Kuemmeth F, Churchill HOH, Herring PK, Marcus CM (2009) Mater Today 13:18

    Article  Google Scholar 

  6. Schneider CM, Kohzuharova R, Groudeva-Zutova S, Zao B, Muehl T, Moenchj I, Vinschelberg H, Leonhardt RA, Fink J (2005) Nanotube spintronics: magnetic systems based on carbon nanotubes. In: Buzaneva E, Scharff P (eds) Frontiers of multifunctional integrated nanosystems, vol 152, Nato science series. Springer Science + Business Media, Inc, Dordrecht, p 359, 2005

    Chapter  Google Scholar 

  7. Jhang SH, Marganska M, Skoursi Y, Preusche D, Witkamp B, Grifoni M, van der Zant H, Strunk C, Wosnitza J (2010) Phys Rev B 82:041404

    Article  CAS  Google Scholar 

  8. Yazyev OV (2011) ChemInform abstract: emergence of magnetism in graphene materials and nanostructures. Chem Inform 42. doi:10.1002/chin.201101219

  9. Wu J, Hagelberg F (2011) J Phys Chem C 115:4571

    Article  CAS  Google Scholar 

  10. Banhart F (1999) Rep Prog Phys 62:1181

    Article  CAS  Google Scholar 

  11. Krasheninnikov AV, Banhart F (2007) Nat Mater 6:723

    Article  CAS  Google Scholar 

  12. Lehtinen P, Foster AS, Ma Y, Krasheninnikov AV, Nieminen RM (2004) Phys Rev Lett 93:187202

    Article  CAS  Google Scholar 

  13. Telling RH, Ewels CP, El-Barbary AA, Heggie MI (2009) Nat Mater 2:333

    Article  CAS  Google Scholar 

  14. Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) J Phys Soc Jp 65:1920

    Article  CAS  Google Scholar 

  15. Nakada K, Fujita M, Dresselhaus G, Dresselhaus M (1996) Phys Rev B 54:17954

    Article  CAS  Google Scholar 

  16. Du AJ, Chen Y, Lu GQ, Smith SC (2008) Appl Phys Lett 93:073101

    Article  CAS  Google Scholar 

  17. Kim YH, Choi J, Chang KJ (2003) Phys Rev B 68:125420

    Article  CAS  Google Scholar 

  18. Hod O, Scuseria GE (2008) ACS Nano 2:2243

    Article  CAS  Google Scholar 

  19. Wu J, Hagelberg F (2009) Phys Rev B 79:115436

    Article  CAS  Google Scholar 

  20. Mananes A, Duque F, Ayuela A, Lopez MJ, Alonso JA (2008) Phys Rev B 78:035432

    Article  CAS  Google Scholar 

  21. Lieb EH (1989) Phys Rev Lett 62:1201

    Article  Google Scholar 

  22. Son YW, Cohen ML, Louie SG (2006) Nature 444:347

    Article  CAS  Google Scholar 

  23. Kim WY, Kim KS (2008) Nat Nanotechnol 3:408

    Article  CAS  Google Scholar 

  24. Pisani L, Chan JA, Montanari B, Harrison NM (2007) Phys Rev B 75:064418

    Article  CAS  Google Scholar 

  25. Kong J, Cao J, Dai HJ, Anderson E (2002) Appl Phys Lett 80:73

    Article  CAS  Google Scholar 

  26. Kong J, Dai HJ (2001) J Phys Chem B 105:2890

    Article  CAS  Google Scholar 

  27. Andriotis AN, Menon M, Srivastava D, Chernozatonskii L (2001) Phys Rev Lett 87:066802

    Article  CAS  Google Scholar 

  28. Menon M, Srivastava D (1997) Phys Rev Lett 79:4453

    Article  CAS  Google Scholar 

  29. Qian D, Wagner DJ, Liu WK, Yu MF, Ruoff RS (2002) Appl Mech Rev 55:495

    Article  Google Scholar 

  30. Coluci VR, Pugno NM, Dantas SO, Galv˜ao DS, Jorio A (2007) Nanotechnology 18:335702

    Article  CAS  Google Scholar 

  31. Li Y, Qiu XM, Yang F, Wang XS, Yin Y, Fan Q (2008) J Phys D Appl Phys 41:155423

    Article  CAS  Google Scholar 

  32. Enyashin AN, Ivanovskii AL (2008) JETP Lett 87:372

    Article  CAS  Google Scholar 

  33. Romo-Herrera JM, Terrones M, Terrones H, Dag S, Meunier V (2007) Nano Lett 7:570

    Article  CAS  Google Scholar 

  34. Wu J, Ayasoufi A, Leszczynski J, Hagelberg F (2013) J Phys Chem C 117:3646

    Article  CAS  Google Scholar 

  35. (a) Kresse G, Hafner J (1993) Phys Rev B 47:558; (b) Kresse G, Hafner J (1994) Phys Rev B 49:14251; (c) Kresse G, Furthmüller J (1996) J Comput Mater Sci 6:15

    Google Scholar 

  36. Mermin NM (1965) Phys Rev 137:A1441

    Article  Google Scholar 

  37. Methfessel M, Paxton AT (1981) Phys Rev B 40:3616

    Article  Google Scholar 

  38. Wood DM, Zunger A (1984) J Phys A 18:1343

    Article  Google Scholar 

  39. Pulay P (1080) Chem Phys Lett 73:393

    Article  Google Scholar 

  40. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  42. Wu J, Hagelberg F (2013) Chem Phys Chem 14:1696

    Article  CAS  Google Scholar 

  43. Wu J, Herrmann T, Nolting W (1999) Phys Rev B 60:12226

    Article  CAS  Google Scholar 

  44. Kudin KN, Scuseria GE, Martin RL (2002) Phys Rev Lett 89:266402

    Article  CAS  Google Scholar 

  45. Prodan ID, Sordo JA, Kudin KN, Scuseria GE (2005) J Chem Phys 123:014703

    Article  CAS  Google Scholar 

  46. Parkin SSP, More N, Roche KP (1990) Phys Rev Lett 64:2304

    Article  CAS  Google Scholar 

  47. Edwards DM, Mathon J, Muniz RB, Phan MS (1991) Phys Rev Lett 67:493

    Article  CAS  Google Scholar 

  48. Bruno P, Chappert C (1991) Phys Rev Lett 67:1602

    Article  CAS  Google Scholar 

  49. Ferreira MS, d’Albuquerque e Castro J, Edwards DM, Mathon J (1996) J Phys Condens Matter 8:11259

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was performed in collaboration with Jackson State University and supported by the DoD through the US Army/Engineer Research and Development Center (ERDC) Vicksburg, MS Contract #W912HZ-10-C-0107. F. H. acknowledges support from the Tennessee NSF-EPSCoR grant TN-SCORE (NSF EPS 1004083). J.L. would like to thank the ONR grant number 08PRO2615-00/N00014-08-1-0324 and NSF RISE program for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hagelberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hagelberg, F., Wu, J., Ayasoufi, A., Leszczynski, J. (2014). Intrinsic Magnetism in Single-Walled Carbon Nanotubes of Finite Length. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry III. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7445-7_6

Download citation

Publish with us

Policies and ethics