Skip to main content

Investigating Complex Surface Phenomena Using Density Functional Theory

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry III
  • 1112 Accesses

Abstract

Surfaces of some materials exhibit vastly different structure than the bulk-truncated atomic structure due to the reduced surface atomic coordination that leads to surface dangling bonds and/or surface stress. In order to relieve the stress, partial dislocation networks are formed on some surfaces, changing the surface periodicity to tens or hundreds of nanometers. By using Pt(111) and Ag/Ag/Pt(111) surface reconstructions as examples, we demonstrate how such large length scale pattern formation can be investigated using “classical” models parameterized within density functional theory. We then present an example of determining the magnetic state of ultrathin films on semimetallic substrates. It is possible that such magnetic films also get reconstructed due to the mismatch in lattice spacing between the film and the substrate. Although the pattern formation on magnetic films can be studied using similar type of models, determining the magnetic state of such superstructures requires further modeling efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srivastava GP (1997) Theory of semiconductor surface reconstruction. Rep Prog Phys 60:561–613

    Article  CAS  Google Scholar 

  2. Needs RJ, Mansfield M (1989) Calculations of the surface stress tensor and surface-energy of the (111) surfaces of iridium, platinum and gold. J Phys Condens Matter 1:7555–7563

    Article  CAS  Google Scholar 

  3. Barth JV, Brune H, Ertl G, Behm RJ (1990) Scanning tunneling microscopy observations on the reconstructed Au(111) surface: atomic structure, long-range superstructure, rotational domains, and surface defects. Phys Rev B 42:9307–9318

    Article  CAS  Google Scholar 

  4. Sandy AR, Mochrie SGJ, Zehner DM, Grübel G, Huang KG, Gibbs D (1992) Reconstruction of the Pt(111) surface. Phys Rev Lett 68:2192–2195

    Article  CAS  Google Scholar 

  5. Brune H, Giovannini M, Bromann K, Kern K (1998) Self-organized growth of nanostructure arrays on strain-relief patterns. Nature 394:451–453

    Article  CAS  Google Scholar 

  6. Günther C, Vrijmoeth J, Hwang RQ, Behm RJ (1995) Strain relaxation in hexagonally close-packed metal-metal interfaces. Phys Rev Lett 74:754–757

    Article  Google Scholar 

  7. Binnig G, Rohrer H, Gerber C, Weibel E (1983) 7 × 7 Reconstruction on Si(111) resolved in real space. Phys Rev Lett 50:120–123

    Article  CAS  Google Scholar 

  8. Uhrberg RIG, Kaurila T, Chao YC (1998) Low-temperature photoemission study of the surface electronic structure of Si(111)7 × 7. Phys Rev B 58:R1730–R1733

    Article  CAS  Google Scholar 

  9. Chen LJ, Wu RQ, Kioussis N, Blanco JR (1997) First principles investigations of 4d magnetism on C(0001). J Appl Phys 81:4161–4163

    Article  CAS  Google Scholar 

  10. Heike S, Watanabe S, Wada Y, Hashizume T (1998) Electron conduction through surface states of the Si(111)-(7 × 7) surface. Phys Rev Lett 81:890–893

    Article  CAS  Google Scholar 

  11. Pushpa R, Narasimhan S, Waghmare U (2004) Symmetries, vibrational instabilities, and routes to stable structures of clusters of Al, Sn, and As. J Chem Phys 121:5211–5220

    Article  CAS  Google Scholar 

  12. Brommer KD, Needels M, Larson BE, Joannopoulos JD (1992) Abinitio theory of the Si(111)-(7 × 7) surface reconstruction – a challenge for massively parallel computation. Phys Rev Lett 68:1355–1358

    Article  CAS  Google Scholar 

  13. Wang Y, Hush NS, Reimers JR (2007) Simulation of the Au(111)-(22 x root 3) surface reconstruction. Phys Rev B 75:233416

    Article  Google Scholar 

  14. Narasimhan S, Vanderbilt D (1992) Elastic stress domains and the herringbone reconstruction on Au(111). Phys Rev Lett 69:1564–1567

    Article  CAS  Google Scholar 

  15. Hamilton JC, Foiles SM (1995) Misfit dislocation structure for close-packed metal-metal interfaces. Phys Rev Lett 75:882–885

    Article  CAS  Google Scholar 

  16. Frenkel J, Kontorowa T (1938) Physikalische Zeitschrift der Sowjetunion 13:1–10

    CAS  Google Scholar 

  17. Aït-Mansour K, Brune H, Passerone D, Schmid M, Xiao W, Ruffieux P et al (2012) Interface-confined mixing and buried partial dislocations for Ag bilayer on Pt(111). Phys Rev B 86:085404

    Article  Google Scholar 

  18. Howe JD, Bhopale P, Tiwary Y, Fichthorn KA (2010) Patterns in strained-layer heteroepitaxy: beyond the Frenkel-Kontorova model. Phys Rev B 81:121410

    Article  Google Scholar 

  19. Altieri S, Tjeng LH, Sawatzky GA (2001) Ultrathin oxide films on metals: new physics and new chemistry? Thin Solid Films 400:9–15

    Article  CAS  Google Scholar 

  20. Takeuchi N, Chan CT, Ho KM (1991) Au(111): a theoretical study of the surface reconstruction and the surface electronic structure. Phys Rev B 43:13899–13906

    Article  CAS  Google Scholar 

  21. Hamilton JC, Stumpf R, Bromann K, Giovannini M, Kern K, Brune H (1999) Dislocation structures of submonolayer films near the commensurate-incommensurate phase transition: Ag on Pt(111). Phys Rev Lett 82:4488–4491

    Article  CAS  Google Scholar 

  22. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  23. Pushpa R, Narasimhan S (2003) Reconstruction of Pt(111) and domain patterns on close-packed metal surfaces. Phys Rev B 67:205418

    Article  Google Scholar 

  24. Bott M, Hohage M, Michely T, Comsa G (1993) Pt(111) reconstruction induced by enhanced Pt gas-phase chemical potential. Phys Rev Lett 70:1489–1492

    Article  CAS  Google Scholar 

  25. Hohage M, Michely T, Comsa G (1995) Pt(111) network reconstruction: structure, growth and decay. Surf Sci 337:249–267

    Article  CAS  Google Scholar 

  26. Barth JV, Behm RJ, Ertl G (1994) Mesoscopic structural transformations of the Au(111) surface-induced by alkali-metal adsorption. Surf Sci 302:L319–L324

    Article  CAS  Google Scholar 

  27. Meyer JA, Schmid P, Behm RJ (1995) Effect of layer-dependent adatom mobilities in heteroepitaxial metal film growth: Ni/Ru(0001). Phys Rev Lett 74:3864–3867

    Article  CAS  Google Scholar 

  28. Rodríguez-Laguna J, Santalla SN (2005) Vertically extended Frenkel-Kontorova model: a real space renormalization group study. Phys Rev B 72:125412

    Article  Google Scholar 

  29. Brune H, Röder H, Boragno C, Kern K (1994) Strain relief at hexagonal-close-packed interfaces. Phys Rev B 49:2997–3000

    Article  CAS  Google Scholar 

  30. Lee YH, Berne BJ (2000) Global optimization: quantum thermal annealing with path integral Monte Carlo. J Phys Chem A 104:86–95

    Article  CAS  Google Scholar 

  31. Gregor T, Car R (2005) Minimization of the potential energy surface of Lennard-Jones clusters by quantum optimization. Chem Phys Lett 412:125–130

    Article  CAS  Google Scholar 

  32. Pushpa R, Rodríguez-Laguna J, Santalla SN (2009) Reconstruction of the second layer of Ag on Pt(111): extended Frenkel-Kontorova model. Phys Rev B 79:085409

    Article  Google Scholar 

  33. Ercolessi F, Tosatti E, Parrinello M (1986) Au (100) surface reconstruction. Phys Rev Lett 57:719–722

    Article  CAS  Google Scholar 

  34. Hirjibehedin CF, Lin CY, Otte AF, Ternes M, Lutz CP, Jones BA et al (2007) Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317:1199–1203

    Article  CAS  Google Scholar 

  35. Hirjibehedin CF, Lutz CP, Heinrich AJ (2006) Spin coupling in engineered atomic structures. Science 312:1021–1024

    Article  CAS  Google Scholar 

  36. Pushpa R, Cruz J, Jones B (2011) Spin and exchange coupling for Ti embedded in a surface dipolar network. Phys Rev B 84:075422

    Article  Google Scholar 

  37. Voigtländer B, Meyer G, Amer NM (1991) Epitaxial growth of thin magnetic cobalt films on Au(111) studied by scanning tunneling microscopy. Phys Rev B 44:10354–10357

    Article  Google Scholar 

  38. Chambliss DD, Wilson RJ, Chiang S (1991) Nucleation of ordered Ni Island arrays on Au(111) by surface-lattice dislocations. Phys Rev Lett 66:1721–1724

    Article  CAS  Google Scholar 

  39. Pushpa R, Narasimhan S (2003) Double stripe reconstruction of the Pt(111) surface. Bull Mater Sci 26:91–96

    Article  CAS  Google Scholar 

  40. Pushpa R, Ghosh P, Narasimhan S, de Gironcoli S (2009) Effective coordination as a predictor of adsorption energies: a model study of NO on Rh(100) and Rh/MgO(100) surfaces. Phys Rev B 79:233406

    Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the financial support from the Research Corporation Cottrell college science award and National Science Foundation CAREER award (DMR-1255584). I wish to acknowledge Shobhana Narasimhan, Barbara Jones, Javier Rodriguez-Laguna, Silvia N. Santalla, and Jesus Cruz for collaborating on these projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghani Pushpa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pushpa, R. (2014). Investigating Complex Surface Phenomena Using Density Functional Theory. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry III. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7445-7_3

Download citation

Publish with us

Policies and ethics