Skip to main content

Models of the Interfaces in Superhard TiN-Based Heterostructures and Nanocomposites from First-Principles

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry III

Abstract

This chapter reviews structures and properties of various TiN-based heterostructures. The study of such systems is of vital importance in development of new materials with desired optimum properties. After discussion of the current literature, the recently published results of first-principles quantum molecular dynamics (QMD) calculations of heterostructures consisting of one monolayer of interfacial SiNx, SiC, BN and AlN inserted between several monolayers thick slabs of B1(NaCl)-TiN (001) and (111) in the temperature range of 0–1,400 K are reviewed in some detail. The results revealed that SiN(001) exists as pseudomorphic B1-SiN interfacial layer only at 0 K. At finite temperature, this heterostructure transforms into distorted octahedral SiN6 and tetrahedral SiN4 units aligned along the {110} directions. At 300 K, the aggregates of the SiNx units are close to a disordered, essentially amorphous SiN. After heating to 1,400 K and subsequent relaxation at 300 K, the interfacial layer corresponds to a strongly distorted Si3N4-like structure. The B1-SiN, Si3N4-like SiN and Si3N4-like Si2N3 interfaces between the TiN(111) slabs are stable in the whole temperature range considered here. The B1-Si3N4-like interfaces derived from SiN by the formation of Si-vacancies are unstable at finite temperatures. An estimate of interfacial formation energies showed that the most favorable configurations of the (111) interfaces are silicon atoms tetrahedrally coordinated to nitrogen. The most stable (001) B1-derived heterostructure with Si0.75 N interface consist of both tetrahedrally and octahedrally coordinated silicon atoms. The TiN(001)/B1-SiC/TiN(001) interface exists as pseudo-morphic B1-SiC layer between 0 K and 600 K. After heating to 900–1,400 K and subsequent static relaxations, the interfacial layer corresponds to a strongly distorted 3C-SiC-like structure oriented in the (111) direction in which the Si and C atoms are located in the same interfacial plane. The Si atoms form fourfold coordinated N-Si ≡ C3 configurations, whereas the C atoms are located in the Ti2 = C ≡ Si3 surrounding. All the (111) interfaces simulated at 0, 300, and 1,400 K have the same atomic configurations. For these interfaces, the Si and C layers correspond to the Si-C network in the (111) direction of 3C-SiC. The Si and C atoms are located in N-Si ≡ C3 and Ti3 ≡ C ≡ Si3 configurations, respectively. The BN(001) interfacial layer forms a disordered h-BN-like structure consisting of BN3 units in the whole temperature range considered here. Finally, the B1-AlN(001) interface is found to be stable within the whole temperature range.

Phonon calculations show that the observed modifications of the interfaces are due to dynamical instability of the B1-type (001) and (111) interfacial layers of BN, SiC and SiN driven by soft modes within the given planes. The calculated electronic densities of states (EDOS) of the (001) interfaces suggest that the reconstructed interfaces should be semiconducting.

A comparison with the results obtained by earlier “static” ab initio DFT calculations at 0 K shows the great advantage of the QMD calculations that account for the effects of thermal activation of structural reconstructions. The results, which can be understood also without the knowledge of theoretical methods, were used to interpret the available experimental results on TiN-based heterostructures and nanocomposite coatings in order to provide guidance to the experimentalists for the preparation of better coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veprek S (1999) J Vac Sci Technol A 89:2401

    Article  Google Scholar 

  2. Veprek S, Niederhofer A, Moto K, Bolom T, Männling H-D, Nesladek P, Dollinger G, Bergmaier A (2000) Surf Coat Technol 133-134:152

    Article  CAS  Google Scholar 

  3. Veprek S, Veprek-Heijman MGJ, Karvankova P, Prochazka J (2005) Thin Solid Films 476:1

    Article  CAS  Google Scholar 

  4. Veprek S, Zhang RF, Veprek-Heijman MGJ, Sheng SH, Argon AS (2010) Surf Coat Technol 204:1898

    Article  CAS  Google Scholar 

  5. Veprek S, Reiprich S (1995) Thin Solid Films 268:64

    Article  CAS  Google Scholar 

  6. Söderberg H, Odén M, Molina-Aldareguia JM, Hultman L (2005) J Appl Phys 97:114327

    Article  Google Scholar 

  7. Chen YH, Lee KW, Chiou W-A, Chung YW, Keer LM (2001) Surf Coat Technol 146-147:209

    Article  CAS  Google Scholar 

  8. Hultman L, Bareño J, Flink A, Söderberg H, Larsson K, Petrova V, Odén M, Greene JE, Petrov I (2007) Phys Rev B 75:155437

    Article  Google Scholar 

  9. Flink A, Beckers M, Sjölén J, Larsson T, Braun S, Karlsson L, Hultman L (2009) J Mater Res 24:2483

    Article  CAS  Google Scholar 

  10. Söderberg H, Odén M, Flink A, Brich J, Persson POA, Beckers M, Hultman L (2007) J Mater Res 22:3255

    Article  Google Scholar 

  11. Veprek S, Veprek-Heijman MGJ (2012) Thin Solid Films 522:274

    Article  CAS  Google Scholar 

  12. Prilliman SG, Clark SM, Alivisatos AP, Karvankova P, Veprek S (2006) Mater Sci Eng A 437:379

    Article  Google Scholar 

  13. Veprek S, Argon AS, Zhang RF (2007) Philos Mag Lett 87:955

    Article  CAS  Google Scholar 

  14. Zhang RF, Argon AS, Veprek S (2009) Phys Rev Lett 102:015503

    Article  CAS  Google Scholar 

  15. Zhang RF, Argon AS, Veprek S (2009) Phys Rev B 79:245426

    Article  Google Scholar 

  16. Hao S, Delley B, Veprek S, Stampfl C (2006) Phys Rev Lett 97:086102

    Article  Google Scholar 

  17. Hao S, Delley B, Stampfl C (2006) Phys Rev B 74:035402

    Article  Google Scholar 

  18. Veprek S (2011) J Nanosci Nanotechnol 11:1

    Article  Google Scholar 

  19. Christiansen S, Albrecht M, Strunk P, Veprek S (1998) J Vac Sci Technol B 16:19

    Article  CAS  Google Scholar 

  20. Zhang RF, Argon AS, Veprek S (2010) Phys Rev B 81:245418

    Article  Google Scholar 

  21. Iwamoto C, Tanaka S-I (1998) J Am Ceram Soc 81:363

    Article  CAS  Google Scholar 

  22. Hao S, Delley B, Stampfl C (2006) Phys Rev B 74:035424

    Article  Google Scholar 

  23. Alling B, Isaev EI, Flink A, Hultman L, Abrikosov IA (2008) Phys Rev B 78:132103

    Article  Google Scholar 

  24. Marten T, Isaev EI, Alling B, Hultman L, Abrikosov IA (2010) Phys Rev B 81:212102

    Article  Google Scholar 

  25. Marten T, Alling B, Isaev EI, Lind H, Tasnádi F, Hultman L, Abrikosov IA (2012) Phys Rev B 85:104106

    Article  Google Scholar 

  26. Zhang RF, Veprek S (2006) Mater Sci Eng A 424:128

    Article  Google Scholar 

  27. Zhang RF, Veprek S (2008) Thin Solid Films 516:2264

    Article  CAS  Google Scholar 

  28. Zhang RF, Veprek S (2007) Phys Rev B 76:174105

    Article  Google Scholar 

  29. Veprek S, Veprek-Heijman MGJ (2007) Surf Coat Technol 201:6064

    Article  CAS  Google Scholar 

  30. Ivashchenko VI, Veprek S, Turchi PEA, Shevchenko VI (2012) Phys Rev B 85:195403

    Article  Google Scholar 

  31. Kong M, Dai J, Lao J, Li G (2007) Appl Surf Sci 253:4734

    Article  CAS  Google Scholar 

  32. Rogl P, Schuster JC (1992) Phase diagrams of ternary boron nitride and silicon nitride systems. ASM International, The Materials Information Society, Materials Park

    Google Scholar 

  33. Toth LE (1971) Transition metal carbides and nitrides. Academic, New York

    Google Scholar 

  34. Veprek S, Haussmann M, Reiprich S, Shizhi L, Dian J (1996) Surf Coat Technol 86-87:394

    Article  CAS  Google Scholar 

  35. Chase MW, Davies CA, Downey JR, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables, 3rd ed., J Phys Chem Ref Data 14 (1856 pages)

    Google Scholar 

  36. Ivashchenko VI, Veprek S, Turchi PEA, Shevchenko VI (2012) Phys Rev B 86:014110

    Article  Google Scholar 

  37. Karvankova P, Veprek-Heijman MGJ, Zawrah MF, Veprek S (2004) Thin Solid Films 467:133

    Article  CAS  Google Scholar 

  38. Karvankova P, Veprek-Heijman MGJ, Azinovic D, Veprek S (2006) Surf Coat Technol 200:2978

    Article  CAS  Google Scholar 

  39. Mendez JM, Qu BD, Evstigneev M, Prince RH (2000) J Appl Phys 87:1235

    Article  CAS  Google Scholar 

  40. Lee SH, Nam KH, Lim J-W, Lee J-J (2003) Surf Coat Technol 174–175:758

    Article  Google Scholar 

  41. Holleck H, Schier V (1995) Surf Coat Technol 76–77:328

    Article  Google Scholar 

  42. Helmersson U, Todorova S, Barnett SA, Sundgren J-E, Markert LC, Greene JE (1987) J Appl Phys 62:481

    Article  CAS  Google Scholar 

  43. Shinn M, Hultman L, Barnett SA (1992) J Mater Res 7:901

    Article  CAS  Google Scholar 

  44. Mirkarimi PB, Hultman L, Barnett SA (1990) Appl Phys Lett 57:2654

    Article  CAS  Google Scholar 

  45. Sproul WD (1996) Science 273:889

    Article  CAS  Google Scholar 

  46. Barnett SA (1993) Physics of thin films. In: Francombe MH, Vossen JL (eds) Mechanic and dielectric properties, vol 17. Academic Press, Boston

    Google Scholar 

  47. Barnett SA, Madan A (1998) Phys World 11:45

    CAS  Google Scholar 

  48. Barnett SA, Madan A, Kim I, Martin K (2003) MRS Bull 28:169

    Article  CAS  Google Scholar 

  49. Wang BJ, Xie F, Jia K (2011) Appl Mech Mater 110–116:1020

    Google Scholar 

  50. Ivashchenko VI, Veprek S (2013) Thin Solid Films 545:391

    Article  CAS  Google Scholar 

  51. Ziebert C, Ulrich S (2006) J Vac Sci Technol A 24:554

    Article  CAS  Google Scholar 

  52. Madan A, Kim IW, Cheng SC, Yashar P, Dravid VP, Barnett SA (1997) Appl Phys Lett 78:1743

    Article  CAS  Google Scholar 

  53. Kim JW, Li Q, Marks LD, Barnett SA (2001) Appl Phys Lett 78:892

    Article  CAS  Google Scholar 

  54. Mayrhofer PH, Hörling A, Karlsson L, Sjölen J, Larsson T, Mitterer C, Hultman L (2003) Appl Phys Lett 83:2049

    Article  CAS  Google Scholar 

  55. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys: Condens Matter 21:395502

    Google Scholar 

  56. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  57. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  58. Billeter SR, Curioni A, Andreoni W (2003) Comput Mater Sci 27:437

    Article  Google Scholar 

  59. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  60. Wang S, Gudipati R, Rao AS, Bostelmann TJ (2007) Appl Phys Lett 91:081916

    Article  Google Scholar 

  61. Baroni S, De Gironcoli S, Dal Corso A, Gianozzii P (2001) Rev Mod Phys 73:515

    Article  CAS  Google Scholar 

  62. Isaev EI, Simak SI, Abrikosov IA, Ahuja R, Vekilov KY, Katsnelson MI, Lichtenstein AI, Johansson B (2007) J Appl Phys 101:123519

    Article  Google Scholar 

  63. Topor L, Kleppa OJ (1986) Metallurg Mater Trans A 17:1217

    Article  Google Scholar 

  64. Cai Y, Zhang L, Zeng Q, Cheng L, Xu Y (2007) Solid State Commun 141:262

    Article  CAS  Google Scholar 

  65. Yu B-R, Zeng Z-Y, Guo HZ, Chen X-R (2007) Commun Theor Phys 48:925

    Article  Google Scholar 

  66. Saib S, Bouarissa N (2005) Eur Phys J B 47:379

    Article  CAS  Google Scholar 

  67. Giacomazzi L, Umari P (2009) Phys Rev B 80:144201

    Article  Google Scholar 

  68. Aiyama T, Fukunaga T, Niihara N, Hirai T, Suzuki K (1079) J Non-Cryst Solids 33:131

    Google Scholar 

  69. Guisbiers G, Ganguli D (eds) (2010) Size effects in metals, semiconductors and inorganic compounds. Trans Tech Publications, Stafa-Zurich

    Google Scholar 

  70. Roduner E (2006) Nanoscopic materials. RSC Publishing, Cambridge

    Google Scholar 

  71. Veprek S, Iqbal Z, Sarott F-A (1982) Philos Mag 45:137

    Article  CAS  Google Scholar 

  72. Greenwood NN, Earnshaw A (1984) Chemistry of elements, Pergamon, Oxford [Quoted after the German translation Chemie der Elemente, 2nd. ed. (VCH Verlagsgesellschaft, Weinheim, 1990)]

    Google Scholar 

  73. Argon AS, Yip S (2006) Philos Mag Lett 86:713

    Article  CAS  Google Scholar 

  74. Chen X, Wang Z, Ma S, Ji V (2010) Diam Relat Mater 19:1336

    Article  CAS  Google Scholar 

  75. Veprek S, Karvankova P, Veprek-Heijman MGJ (2005) J Vac Sci Technol B 23:L17

    Article  CAS  Google Scholar 

  76. Stueber M, Holleck H, Leiste H, Seemann K, Ulrich S, Ziebert C (2009) J Alloy Comp 483:321

    Article  CAS  Google Scholar 

  77. Dove MT (1993) Introduction to lattice dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  78. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York

    Google Scholar 

  79. Löwdin PO (1950) J Chem Phys 18:365

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the STCU contract, No. 5539. The work of P. T. was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. The authors are grateful to the directorate of the Summery Institute at Jackson State University for financial support and the possibility to perform large-scale calculations. We also thank to Dr. M.G.J. Veprek-Heijman for critical reading of the manuscript and many useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Ivashchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ivashchenko, V., Veprek, S., Turchi, P., Leszczynski, J. (2014). Models of the Interfaces in Superhard TiN-Based Heterostructures and Nanocomposites from First-Principles. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry III. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7445-7_2

Download citation

Publish with us

Policies and ethics