Skip to main content

Hints from Computational Chemistry: Mechanisms of Transformations of Simple Species into Purine and Adenine by Feasible Abiotic Processes

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry III

Abstract

The chemical evolution of biomolecules such as nucleobases and their analogues from simple, one carbon containing molecules under abiotic conditions is a puzzle closely connected to the origin of life. Theoretical elucidation of the abiotic reaction routes leading from basic molecules cyanide acid (HCN) and formamide (H2NCHO) to the formation of purine and adenine is reviewed here. The mechanism of three pathways: from formamide dimer via pyrimidine to purine, from AICN (4-aminoimidazole-5-carboxamidine) to adenine, and from formamide to purine and adenine, are discussed. Based on the comparison of step-by-step mechanism of the reaction pathways, in the addition reaction formamide is suggested to be more reactive than HCN. Beside its simplicity, the formamide self-catalyzed mechanism is energetically more viable than either water-catalyzed mechanism or non-catalyzed process. Moreover, this self-catalyzed mechanism is able to explain the ratio of purine to adenine observed in experiments. The formamide self-catalyzed mechanism for the route leading from formamide to purine and/or adenine is most likely for the formation of adenine (and purine) in the formamide solutions in the early stage of the earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson JD, Crick FHC (1953) Nature 171:737–738

    Article  CAS  Google Scholar 

  2. Watson JD, Crick FHC (1953) Cold Spring Harb Symp Quant Biol 18:123–131

    Article  CAS  Google Scholar 

  3. Miller SL (1953) Science 117:528–529

    Article  CAS  Google Scholar 

  4. Miller SL, Harold CU (1959) Science 130:245–251

    Article  CAS  Google Scholar 

  5. Oró J, Kimball AP (1961) Arch Biochem Biophys 94:217–227

    Article  Google Scholar 

  6. Oró J, Kamat SS (1961) Nature 190:442–443

    Article  Google Scholar 

  7. Saladino R, Crestini C, Costanzo G, Di Mauro E (2005) On the prebiotic synthesis of nucleobases, nucleotides, oligonucleotides, pre-RNA and pre-DNA molecules. In: Walde P. (ed) Topics in current chemistry, “Prebiotic chemistry”, vol 259. Berlin, Springer, pp 29–68

    Google Scholar 

  8. Saladino R, Crestini C, Ciciriello F, Costanzo G, Di Mauro E (2007) Chem Biodivers 4:694–720

    Article  CAS  Google Scholar 

  9. Solomon M (1973) Phys Today 26:32–40

    Article  CAS  Google Scholar 

  10. Crovisier J (2004) Chap. 8. In: Ehrenfreund P et al (ed) Astrobiology: future perspectives, Astrophysics and space science library, vol 305. Kluwer/Springer, Dordrecht, pp 179–203

    Google Scholar 

  11. Bockelee-Morvan D, Lis DC, Wink JE, Despois D, Crovisier J, Bachiller R, Benford DJ, Biver N, Colom P, Davies JK, Gérard E, Germain B, Houde M, Mehringer D, Moreno R, Paubert G, Phillips TG, Rauer H (2000) Astron Astrophys 353:1101–1114

    CAS  Google Scholar 

  12. Schutte WA, Boogert ACA, Tielens AGGM, Whittet DCB, Gerakines PA, Chiar JE, Ehrenfreund P, Greenberg JM, van Dishoeck EF, de Graauw T (1999) Astron Astrophys 343:966–976

    CAS  Google Scholar 

  13. Bredereck H, Effenberger F, Rainer G, Schosser HP (1962) Justus Liebigs Ann Chem 659:133–138

    Article  CAS  Google Scholar 

  14. Yamada H, Okamoto T (1972) Chem Pharm Bull 20:623–624

    Article  CAS  Google Scholar 

  15. Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E (2012) Biochimie 94:1451–1456

    Article  CAS  Google Scholar 

  16. Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E (2012) Phys Life Rev 9:84–104

    Article  Google Scholar 

  17. Saladino R, Crestini C, Costanzo G, Negri R, Di Mauro E (2001) Bioorg Med Chem 9:1249–1253

    Article  CAS  Google Scholar 

  18. Saladino R, Crestini C, Costanzo G, Di Mauro E (2004) Curr Org Chem 8:1425–1443

    Article  CAS  Google Scholar 

  19. Saladino R, Ciambecchini U, Crestini C, Costanzo G, Negri R, Di Mauro E (2003) Chem Biol Chem 4:514–521

    Article  CAS  Google Scholar 

  20. Saladino R, Crestini C, Ciambecchini U, Ciciriello F, Costanzo G, Di Mauro E (2004) Chem Biol Chem 5:1558–1566

    Article  Google Scholar 

  21. Senanayake SD, Idriss H (2006) Proc Natl Acad Sci U S A 103:1194–1198

    Article  CAS  Google Scholar 

  22. Bark HL, Buckley R, Grieves GA, Di Mauro E, Hud NV, Orlando TM (2010) Chem Biol Chem 11:1240–1243

    Article  CAS  Google Scholar 

  23. Hudson JS, Eberle JF, Vachhani RH, Rogers LC, Wade JH, Krishnamurthy R, Springsteen G (2012) Angew Chem Int Ed 51:5134–5137

    Article  CAS  Google Scholar 

  24. Yamada H, Hirobe M, Higashiyama K, Takahashi H, Suzuki KT (1978) J Am Chem Soc 100:4617–4618

    Article  CAS  Google Scholar 

  25. Ochiai M, Marumoto R, Kobayashi S, Shimazu H, Morita K (1968) Tetrahedron 24:5731–5737

    Article  CAS  Google Scholar 

  26. Yamada H, Hirobe M, Higashiyama K, Takahashi H, Suzuki KT (1978) Tetrahedron Lett 19:4039–4042

    Article  Google Scholar 

  27. Yamada H, Hirobe M, Okamoto T (1980) Yakugaku Zasshi 100:489–492

    CAS  Google Scholar 

  28. Shuman RF, Shearin WE, Tull RJ (1979) J Org Chem 44:4532–4536

    Article  CAS  Google Scholar 

  29. Sponer JE, Mladek A, Sponer J, Fuentes-Cabrera M (2012) J Phys Chem A 116:720–726

    Article  CAS  Google Scholar 

  30. Oró J (1960) Biochem Biophys Res Commun 2:407–412

    Article  Google Scholar 

  31. Oró J (1961) Nature 191:1193–1194

    Article  Google Scholar 

  32. Sanchez RA, Ferris JP, Orgel LE (1967) J Mol Biol 30:223–253

    CAS  Google Scholar 

  33. Ferris JP, Orgel L (1966) J Am Chem Soc 88:1074

    Article  CAS  Google Scholar 

  34. Sanchez RA, Ferris JP, Orgel LE (1968) J Mol Biol 38:121–128

    Article  CAS  Google Scholar 

  35. Ferris JP, Orgel LE (1965) J Am Chem Soc 87:4976–4977

    Article  CAS  Google Scholar 

  36. Ferris JP, Orgel LE (1966) J Am Chem Soc 88:3829–3831

    Article  CAS  Google Scholar 

  37. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  40. Scuseria GE, Schaefer HF III (1989) J Chem Phys 90:3700–3703

    Article  CAS  Google Scholar 

  41. Scuseria GE, Janssen CL, Schaefer HF III (1988) J Chem Phys 89:7382–7387

    Article  CAS  Google Scholar 

  42. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  43. Roy D, Najafian K, von Schleyer R (2007) Proc Natl Acad Sci U S A 104:17272–17277

    Article  Google Scholar 

  44. Wang J, Gu J, Nguyen MT, Springsteen G, Leszczynski J (2013) J Phys Chem B 117:2314–2320

    Article  CAS  Google Scholar 

  45. Wang J, Gu J, Nguyen MT, Springsteen G, Leszczynski J (2013) J Phys Chem B 117:9333–9342

    Article  CAS  Google Scholar 

  46. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  47. Cossi M, Rega N, Scalmani G, Barone VJ (2003) Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  48. Barone V, Cossi M (1998) J Phys Chem A102:1995–2001

    Article  Google Scholar 

  49. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  50. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  51. Nguyen VS, Abbott HL, Dawley MM, Orlando TM, Leszczynski J, Nguyen MT (2011) J Phys Chem A 115:841–851

    Article  CAS  Google Scholar 

  52. Nguyen VS, Orlando TM, Leszczynski J, Nguyen MT (2013) J Phys Chem A 117:2543–2555

    Article  CAS  Google Scholar 

  53. Moore ML (1949) In: Adams R, Bachmann WE, Blatt AH, Fieser LF, Johnson JR (eds) Organic reactions, vol 5. Wiley, New York, pp 301–330

    Google Scholar 

  54. Wang J, Gu J, Nguyen MT, Springsteen G, Leszczynski J (2013) J Phys Chem B 117:14039–14045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by NSF and the NASA Astrobiology Program under the NSF Center for Chemical Evolution, CHE1004570. We would like to thank the Mississippi Center for Supercomputing Research for a generous allotment of computer time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiande Gu or Jerzy Leszczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, J., Gu, J., Leszczynski, J. (2014). Hints from Computational Chemistry: Mechanisms of Transformations of Simple Species into Purine and Adenine by Feasible Abiotic Processes. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry III. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7445-7_12

Download citation

Publish with us

Policies and ethics