Skip to main content

Valence Anions of DNA-Related Systems in the Gas Phase: Computational and Anion Photoelectron Spectroscopy Studies

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry III

Abstract

Formation of stable radical anion is one of the most apparent event resulting from the interaction of a biomolecule with an electron. Although, the dipole-bound (DB) anions of nucleobases (NBs) prevail in the gas phase as indicated by negative ion photoelectron spectroscopy (PES), even relatively weak interactions such as those present in the uracil-water complexes are sufficient to render the valence bound (VB) anions adiabatically stable. Moreover, since the electron clouds of dipole bound anionic states are much more diffuse than those of valence bound anions, they are strongly destabilized with respect to the latter in condensed phase. This is why VB anions rather than DB anions of nucleobases are more relevant for biological systems, i.e., in particular for DNA. In this review article, we discuss molecular factors governing the stability of valence anions of nucleobases. On the basis of PES measurements and quantum chemical calculations, we demonstrate that tautomerisation leading to the very rare tautomers of NBs renders the valence anions of nucleobases adiabatically stable. Moreover, we present how the stability of VB anions increases on the transition from NBs to nucleotides. On the other hand, studying anionic complexes of nucleobases with inorganic and organic proton donors, other nucleobases and nucleosides, we emphasize the importance of interactions within double stranded DNA as well as with species present in the environment in which DNA is always immersed under biological conditions. We show that in the complexes of NBs with sufficiently acidic proton donors, electron attachment frequently induces barrier-free proton transfer (BFPT) leading to a significant stabilization of anionic states in nucleobases. Our discussion is closing with a summary, including open questions on the influence of interactions between DNA and proteins on the stability and fate of anionic species induced by electrons in DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joiner M, Van der Kogel A (eds) (2009) Basic clinical radiobiology, 4th edn. Hodder Arnold, London.

    Google Scholar 

  2. Warters RL, Hofer KG, Harris CR, Smith JM (1977) Curr Top Radiat Res Q 12:389

    Google Scholar 

  3. von Sonntag C (1987) The chemical basis of radiation biology. Taylor & Francis, London.

    Google Scholar 

  4. Michael BD, O’Neill P (2000) Science 287:1603

    Article  CAS  Google Scholar 

  5. Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Science 287:1658

    Article  CAS  Google Scholar 

  6. Sanche L (2008) In: Shukla M, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acid: a comprehensive theoretical and experimental analysis. Challenges and advances in computational chemistry and physics. Springer, Dordrecht, p 531

    Google Scholar 

  7. Sanche L (2009) In: Greenberg MM (ed) Radical and radical ion reactivity in nucleic acid chemistry. Wiley series of reactive intermediates in chemistry and biology. Wiley, Hoboken, p 239

    Google Scholar 

  8. Gu J, Leszczynski J, Schaefer HF (2012) Chem Rev 112:5603

    Article  CAS  Google Scholar 

  9. Rak J, Mazurkiewicz K, Kobyłecka M, Storoniak P, Haranczyk M, Dąbkowska I, Bachorz RA, Gutowski M, Radisic D, Stokes ST, Eustis SN, Wang D, Li X, Ko YJ, Bowen KH (2008) In: Shukla M, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acid: a comprehensive theoretical and experimental analysis. Challenges and advances in computational chemistry and physics. Springer, Dordrecht, p 619

    Google Scholar 

  10. Djordjevic B, Szybalski W (1960) J Exp Med 112:509

    Article  CAS  Google Scholar 

  11. Erickson RL, Szybalski W (1963) Radiat Res 20:252

    Article  Google Scholar 

  12. Brust D, Feden J, Farnsworth J, Amir C, Broaddus WC, Valerie K (2000) Cancer Gene Ther 7:778

    Article  CAS  Google Scholar 

  13. Cecchini S, Girouard S, Huels MA, Sanche L, Hunting DJ (2005) Biochemistry 44:1932

    Article  CAS  Google Scholar 

  14. Chomicz L, Rak J, Storoniak P (2012) J Phys Chem B 116:5612

    Article  CAS  Google Scholar 

  15. Park Y, Polska K, Rak J, Wagner JR, Sanche L (2012) J Phys Chem B 116:9676

    Article  CAS  Google Scholar 

  16. Polska K, Rak J, Bass AD, Cloutier P, Sanche L (2012) J Chem Phys 136:075101

    Article  CAS  Google Scholar 

  17. Lehnert S (2008) Biomolecular action of ionizing radiation. Taylor & Francis, New York, p 123

    Google Scholar 

  18. Voityuk AA (2006) In: Sponer J, Lankas F (eds) Computational modeling of charge transfer in DNA in computational studies of RNA and DNA. Challenges and advances in computational chemistry and physics, vol 2. Springer, Dordrecht, p 485

    Google Scholar 

  19. Svozil D, Jungwirth P, Havlas Z (2004) Collect Czech Chem Commun 69:1395

    Article  CAS  Google Scholar 

  20. Sevilla MD, Besler B, Colson AO (1994) J Phys Chem 98:2215

    Article  CAS  Google Scholar 

  21. Neumark DM, Lykke KR, Andersen T, Lineberger WC (1985) Phys Rev A: Gen Phys 32:1890

    Article  CAS  Google Scholar 

  22. Mazurkiewicz K, Bachorz RA, Gutowski M, Rak J (2006) J Phys Chem B 110:24696

    Article  CAS  Google Scholar 

  23. Bachorz RA, Klopper W, Gutowski M (2007) J Chem Phys 126:085101

    Article  CAS  Google Scholar 

  24. Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB (2002) Chem Rev 102:231

    Article  CAS  Google Scholar 

  25. Sevilla MD, Besler B, Colson A (1995) J Phys Chem 99:1060

    Article  CAS  Google Scholar 

  26. Desfrançois C, Periquet V, Bouteiller Y, Schermann JP (1998) J Phys Chem A 102:1274

    Article  Google Scholar 

  27. Schiedt J, Weinkauf R, Neumark DM, Schlag EW (1998) Chem Phys 239:511

    Article  CAS  Google Scholar 

  28. Curtiss LA, Redfern PC, Raghavachari KJ (2007) Chem Phys 126:084108

    Article  CAS  Google Scholar 

  29. Curtiss LA, Redfern PC, Raghavachari KJ (2007) Chem Phys 127:124105

    Article  CAS  Google Scholar 

  30. Andersson K, Malmqvist P-A, Roos BO (1992) J Chem Phys 96:1218

    Article  CAS  Google Scholar 

  31. Roca-Sanjuan D, Merchan M, Serrano-Andres L, Rubio MJ (2008) Chem Phys 129:095104

    Article  CAS  Google Scholar 

  32. Jensen F (2007) Introduction to computational chemistry second edition. Wiley, Chichester p 184.

    Google Scholar 

  33. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785; Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  35. Russo N, Toscano M, Grand A (2000) J Comput Chem 21:1243

    Article  CAS  Google Scholar 

  36. Wetmore SD, Boyd RJ, Eriksson LA (2000) Chem Phys Lett 322:129

    Article  CAS  Google Scholar 

  37. Saettel NJ, Wiest OJ (2001) J Am Chem Soc 123:2693

    Article  CAS  Google Scholar 

  38. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364

    Article  CAS  Google Scholar 

  39. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  40. Eustis S, Wang D, Lyapustina S, Bowen KH (2007) J Chem Phys 127:224309

    Article  CAS  Google Scholar 

  41. Bachorz RA, Rak J, Gutowski M (2005) Phys Chem Chem Phys 7:2116

    Article  CAS  Google Scholar 

  42. Bachorz RA, Klopper W, Gutowski M, Li X, Bowen KH (2008) J Chem Phys 129:054309

    Article  CAS  Google Scholar 

  43. Harańczyk M, Rak J, Gutowski M (2005) J Phys Chem A 109:11495

    Article  CAS  Google Scholar 

  44. Haranczyk M, Gutowski M, Li X, Bowen KH (2007) Proc Natl Acad Sci U S A 104:4804

    Article  CAS  Google Scholar 

  45. Haranczyk M, Gutowski M (2005) Angew Chem Int Ed 44:6585

    Article  CAS  Google Scholar 

  46. Haranczyk M, Gutowski M (2005) J Am Chem Soc 127:699

    Article  CAS  Google Scholar 

  47. Haranczyk M, Gutowski M, Li X, Bowen KH (2007) J Phys Chem B 111:14073

    Article  CAS  Google Scholar 

  48. Li X, Bowen KH, Haranczyk M, Bachorz RA, Mazurkiewicz K, Rak J, Gutowski M (2007) J Chem Phys 127:174309

    Article  CAS  Google Scholar 

  49. Szyperska A, Rak J, Leszczynski J, Li X, Ko YJ, Wang H, Bowen KH (2010) Chem Phys Chem 11:880

    Article  CAS  Google Scholar 

  50. Colson A, Besler B, Close DM, Sevilla MD (1992) J Phys Chem 96:661

    Article  CAS  Google Scholar 

  51. Dolgounitcheva O, Zakrzewski VG, Ortiz JV (1999) Chem Phys Lett 307:220

    Article  CAS  Google Scholar 

  52. Dolgounitcheva O, Zakrzewski VG, Ortiz JV (2001) J Phys Chem A 105:8782

    Article  CAS  Google Scholar 

  53. Wesolowski SS, Leininger ML, Pentchev PN, Schaefer HF (2001) J Am Chem Soc 123:4023

    Article  CAS  Google Scholar 

  54. Li X, Cai Z, Sevilla MD (2002) J Phys Chem A 106:1596

    Article  CAS  Google Scholar 

  55. Oyler NA, Adamowicz L (1993) J Phys Chem 97:11122

    Article  CAS  Google Scholar 

  56. Oyler NA, Adamowicz L (1994) Chem Phys Lett 219:223

    Article  CAS  Google Scholar 

  57. Smith DMA, Jalbout AF, Smets J, Adamowicz L (2000) Chem Phys 260:45

    Article  CAS  Google Scholar 

  58. Hendricks JH, Lyapustina SA, de Clercq HL, Snodgrass JT, Bowen KH (1996) J Chem Phys 104:7788

    Article  CAS  Google Scholar 

  59. Desfrançois C, Abdoul-Carime H, Schermann JP (1996) J Chem Phys 104:7792

    Article  Google Scholar 

  60. Periquet V, Moreau A, Carles S, Schermann J, Desfrançois C (2000) J Electron Spectrosc Relat Phenom 106:141

    Article  CAS  Google Scholar 

  61. Simons J (2006) Acc Chem Res 39:772

    Article  CAS  Google Scholar 

  62. Dabkowska I, Rak J, Gutowski M (2005) Eur Phys J D 35:429

    Article  CAS  Google Scholar 

  63. Bao X, Wang J, Gu J, Leszczynski J (2006) Proc Natl Acad Sci U S A 103:5658

    Article  CAS  Google Scholar 

  64. Ray SG, Daube SS, Naaman R (2005) Proc Natl Acad Sci U S A 102:15

    Article  CAS  Google Scholar 

  65. Löwdin PO (1963) Rev Mod Phys 35:724

    Article  Google Scholar 

  66. Desfrançois C, Carles S, Schermann JP (2000) Chem Rev 100:3943

    Article  CAS  Google Scholar 

  67. Gutowski M, Dąbkowska I, Rak J, Xu S, Nilles JM, Radisic D, Bowen KH (2002) Eur Phys J D 20:431

    Article  CAS  Google Scholar 

  68. Harańczyk M, Rak J, Gutowski M, Radisic D, Stokes ST, Nilles JM, Bowen KH (2004) Isr J Chem 44:157

    Article  Google Scholar 

  69. Hendricks JH, Lyapustina SA, de Clercq HL, Bowen KH (1998) J Chem Phys 108:8

    Article  CAS  Google Scholar 

  70. Harańczyk M, Bachorz R, Rak J, Gutowski M, Radisic D, Stokes S, Nilles JM, Bowen KH (2003) J Phys Chem B 107:7889

    Article  CAS  Google Scholar 

  71. Dolgounitcheva O, Zakrzewski VG, Ortiz JV (1999) J Phys Chem A 103:7912

    Article  CAS  Google Scholar 

  72. Dąbkowska I, Rak J, Gutowski M, Nilles JM, Radisic D, Bowen KH (2004) J Chem Phys 120:6064

    Article  CAS  Google Scholar 

  73. Dąbkowska I, Rak J, Gutowski M, Radisic D, Stokes ST, Nilles JM, Bowen KH (2004) Phys Chem Chem Phys 6:4351

    Article  CAS  Google Scholar 

  74. Aflatooni K, Hitt B, Gallup GA, Burrow PD (2001) J Chem Phys 115:6489

    Article  CAS  Google Scholar 

  75. Haranczyk M, Rak J, Gutowski M, Radisic D, Stokes ST, Bowen KH (2005) J Phys Chem B 109:13383

    Article  CAS  Google Scholar 

  76. Harańczyk M, Dąbkowska I, Rak J, Gutowski M, Nilles JM, Stokes ST, Radisic D, Bowen KH (2004) J Phys Chem B 108:6919

    Article  CAS  Google Scholar 

  77. Ko YJ, Wang H, Radisic D, Stokes ST, Eustis SN, Bowen KH, Mazurkiewicz K, Storoniak P, Kowalczyk A, Haranczyk M, Gutowski M, Rak J (2010) Mol Phys 108:2621

    Article  CAS  Google Scholar 

  78. Mazurkiewicz K, Haranczyk M, Gutowski M, Rak J, Radisic D, Eustis SN, Wang D, Bowen KH (2007) J Am Chem Soc 129:1216

    Article  CAS  Google Scholar 

  79. Mazurkiewicz K, Haranczyk M, Storoniak P, Gutowski M, Rak J, Radisic D, Eustis SN, Wang D, Bowen KH (2007) Chem Phys 342:215

    Article  CAS  Google Scholar 

  80. Richardson NA, Wesolowski SS, Schaefer HF (2003) J Phys Chem B 107:848

    Article  CAS  Google Scholar 

  81. Al-Jihad I, Smets J, Adamowicz L (2000) J Phys Chem A 104:2994

    Article  CAS  Google Scholar 

  82. Kumar A, Knapp-Mohammady M, Mishra PC, Suhai S (2004) J Comput Chem 25:1047

    Article  CAS  Google Scholar 

  83. Radisic D, Bowen KH, Dąbkowska I, Storoniak P, Rak J, Gutowski M (2005) J Am Chem Soc 127:6443

    Article  CAS  Google Scholar 

  84. Smets J, Jalbout AF, Adamowicz L (2001) Chem Phys Lett 342:342

    Article  CAS  Google Scholar 

  85. Li X, Cai Z, Sevilla MD (2001) J Phys Chem B 105:10115

    Article  CAS  Google Scholar 

  86. Richardson NA, Wesolowski SS, Schaefer HF (2002) J Am Chem Soc 124:10163

    Article  CAS  Google Scholar 

  87. Szyperska A, Rak J, Leszczynski J, Li X, Ko YJ, Wang H, Bowen KH (2009) J Am Chem Soc 131:2663

    Article  CAS  Google Scholar 

  88. Falcone JM, Becker D, Sevilla MD, Swarts SG (2005) Radiat Phys Chem 72:257

    Article  CAS  Google Scholar 

  89. Storoniak P, Mazurkiewicz K, Haranczyk M, Gutowski M, Rak J, Eustis SN, Ko YJ, Wang H, Bowen KH (2010) J Phys Chem B 114:11353

    Article  CAS  Google Scholar 

  90. Mazurkiewicz K, Harańczyk M, Gutowski M, Rak J (2007) Int J Quantum Chem 107:2224

    Article  CAS  Google Scholar 

  91. Stokes ST, Li X, Grubisic A, Ko YJ, Bowen KH (2007) J Chem Phys 127:084321

    Article  CAS  Google Scholar 

  92. Kobyłecka M, Gu J, Rak J, Leszczynski J (2008) J Chem Phys 128:044315

    Article  CAS  Google Scholar 

  93. Richardson NA, Gu J, Wang S, Xie Y, Schaefer HF (2004) J Am Chem Soc 126:4404

    Article  CAS  Google Scholar 

  94. Li X, Sanche L, Sevilla MD (2006) Rad Res 165:721

    Article  CAS  Google Scholar 

  95. Stokes ST, Grubisic A, Li X, Ko YJ, Bowen KH (2008) J Chem Phys 128:044314

    Article  CAS  Google Scholar 

  96. Ko YJ, Wang H, Cao R, Radisic D, Eustis SN, Stokes ST, Lyapustina S, Tian SX, Bowen KH (2010) Phys Chem Chem Phys 12:3535

    Article  CAS  Google Scholar 

  97. Ko YJ, Storoniak P, Wang H, Bowen KH, Rak J (2012) J Chem Phys 137:205101

    Article  CAS  Google Scholar 

  98. Storoniak P, Rak J, Ko YJ, Wang H, Bowen KH (2012) J Phys Chem B 116:13975

    Article  CAS  Google Scholar 

  99. Storoniak P, Rak J, Ko YJ, Wang H, Bowen KH (2013) J Chem Phys 139:075101

    Google Scholar 

  100. Seeman NC, Rosenberg JM, Rich A (1976) Proc Natl Acad Sci U S A 73:804

    Article  CAS  Google Scholar 

  101. Cheng AC, Chen WW, Fuhrmann CN, Frankel AD (2003) J Mol Biol 327:781

    Article  CAS  Google Scholar 

  102. Luscombe NM, Laskowski RA, Thornton JM (2001) Nucl Acids Res 29:2860

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Lidia Chomicz and Justyna Wiczk for critical proofreading of the manuscript. Most of the experimental work described in this review was supported by the (US) National Science Foundation under grant no. CHE-1111693 (KHB). This work was also supported by the Polish Ministry of Science and Higher Education (MNiSW), Grant No. DS/530-8221-D186-13 (J.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Rak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Storoniak, P. et al. (2014). Valence Anions of DNA-Related Systems in the Gas Phase: Computational and Anion Photoelectron Spectroscopy Studies. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry III. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7445-7_11

Download citation

Publish with us

Policies and ethics