Skip to main content

Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

  • Chapter

Abstract

The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine “how space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,” and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from ∼20 keV to ∼1 MeV. RBSPICE will also measure electrons over the energy range ∼25 keV to ∼1 MeV in order to provide instrument background information in the radiation belts. A description of the instrument and its data products are provided in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S.-I. Akasofu, In memoriam Sydney Chapman. Space Sci. Rev. 11, 599–606 (1970)

    Article  ADS  Google Scholar 

  • H. Alfvén, A theory of magnetic storms and of the aurorae. K. Sven. Vetenskapakad. Handl., Ser. 3 18(3) (1939) (Reprinted in part with comments by Alex Dessler and John Wilcox in Eos 51, 180–194 (1970))

    Google Scholar 

  • H. Alfvén, A theory of magnetic storms and of the aurorae, II, The aurorae; III, The magnetic disturbances. K. Sven. Vetenskapakad. Handl., Ser. 3 18(9) (1940)

    Google Scholar 

  • V. Angelopoulos, W. Baumjohann, C.F. Kennel, F.V. Coroniti, M.G. Kivelson, R. Pellat, R.J. Walker, H. Lühr, G. Paschmann, Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97, 4027 (1992)

    Article  ADS  Google Scholar 

  • S. Barabash, P.C. Brandt, O. Norberg, R. Lundin, E.C. Roelof, C.J. Chase, B.H. Mauk, H. Koskinen, Energetic neutral atom imaging by the Astrid microsatellite. Adv. Space Res. 20, 1055–1060 (1997). doi:10.1016/S0273-1177(97)00560-7

    Article  ADS  Google Scholar 

  • W. Baumjohann, G. Paschmann, H. Lühr, Characteristics of high-speed ion flows in the plasma sheet. J. Geophys. Res. 95, 3801 (1990)

    Article  ADS  Google Scholar 

  • P.C. Brandt, S. Ohtani, D.G. Mitchell, M.C. Fok, E.C. Roelof, R. Demajistre, Global ENA observations of the storm main-phase ring current: implications for skewed electric fields in the inner magnetosphere. Geophys. Res. Lett. 29(20), 1954 (2002). doi:10.1029/2002GL015160

    Article  ADS  Google Scholar 

  • S. Chapman, V.C.A. Ferraro, A new theory of magnetic storms, I, The initial phase. J. Geophys. Res. 36, 77–97, 171–186 (1931)

    Google Scholar 

  • S. Chapman, V.C.A. Ferraro, A new theory of magnetic storms, I, The initial phase (continued). J. Geophys. Res. 37, 147–156, 421–429 (1932)

    Google Scholar 

  • S. Chapman, V.C.A. Ferraro, A new theory of magnetic storms, II, The main phase. J. Geophys. Res. 38, 79–96 (1933)

    Article  ADS  Google Scholar 

  • M. Chen, C.-P. Wang, M. Schulz, L.R. Lyons, Solar-wind influence on MLT dependence of plasma sheet conditions and their effects on storm time ring current formation. Geophys. Res. Lett. 34, L14112 (2007). doi:10.1029/2007GL030189

    Article  ADS  Google Scholar 

  • A.J. Dessler, Swedish iconoclast recognized after many years of rejection and obscurity. Science 170, 604–606 (1970)

    Article  ADS  Google Scholar 

  • S. Dubyagin, V. Sergeev, S. Apatenkov, V. Angelopoulos, A. Runov, R. Nakamura, W. Baumjohann, J. McFadden, D. Larson, Can flow bursts penetrate into the inner magnetosphere? Geophys. Res. Lett. 38, L08102 (2011). doi:10.1029/2011GL047016

    Article  ADS  Google Scholar 

  • Y. Ebihara, M. Ejiri, Simulation study on fundamental properties of the storm-time ring current. J. Geophys. Res. 105, 15843–15859 (2000). doi:10.1029/1999JA900493

    Article  ADS  Google Scholar 

  • Y. Ebihara, M. Ejiri, Numerical simulation of the ring current: review. Space Sci. Rev. 105(1–2), 377 (2003)

    Article  ADS  Google Scholar 

  • D. Fairfield et al., Geotail observations of substorm onset in the inner magnetotail. J. Geophys. Res. 103(A1), 103 (1998)

    Article  ADS  Google Scholar 

  • D. Fairfield et al., Earthward flow bursts in the inner magnetotail and their relation to auroral brightenings, AKR intensifications, geosynchronous particle injections and magnetic activity. J. Geophys. Res. 104(A1), 355 (1999)

    Article  ADS  Google Scholar 

  • M.C. Fok, R.A. Wolf, R.W. Spiro, T.E. Moore, Comprehensive computational model of Earth’s ring current. J. Geophys. Res. 106(A5), 8417–8424 (2001)

    Article  ADS  Google Scholar 

  • C.S. Gillmor, The formation and early evolution of studies of the magnetosphere, in Discovery of the Magnetosphere, ed. by C.S. Gillmor, J.R. Sprieter (American Geophysical Union, Washington, 1997)

    Chapter  Google Scholar 

  • M.G. Henderson, G.D. Reeves, H.E. Spence, R.B. Sheldon, A.M. Jorgensen, J.B. Blake, J.F. Fennell, First energetic neutral atom images from polar. Geophys. Res. Lett. 24, 1167–1170 (1997). doi:10.1029/97GL01162

    Article  ADS  Google Scholar 

  • T. Hori, A.T.Y. Lui, S. Ohtani, P.C. Brandt, B.H. Mauk, R.W. McEntire, K. Maezawa, T. Mukai, Y. Kasaba, H. Hayakawa, Storm-time convection electric field in the near-Earth plasma sheet. J. Geophys. Res. 110, A04213 (2005). doi:10.1029/2004JA010449

    Article  ADS  Google Scholar 

  • V.K. Jordanova, L.M. Kistler, C.J. Farrugia, R.B. Torbert, Effects of inner magnetospheric convection on ring current dynamics: March 10–12, 1998. J. Geophys. Res. 106(A), 29705 (2001). doi:10.1029/2001JA000047

    Article  ADS  Google Scholar 

  • J.U. Kozyra, M.W. Liemohn, Ring current energy input and decay. Space Sci. Rev. 109, 105–131 (2003)

    Article  ADS  Google Scholar 

  • J.U. Kozyra, V.K. Jordanova, J.E. Borovsky, M.F. Thomsen, D.J. Knipp, D.S. Evans, D.J. McComas, T.E. Cayton, Effects of a high-density plasma sheet on ring current development during the November 2–6, 1993, magnetic storm. J. Geophys. Res. 103, 26285 (1998)

    Article  ADS  Google Scholar 

  • L.J. Lanzerotti, A. Hasegawa, C.G. Maclennan, Drift mirror instability in the magnetosphere: particle and field oscillations and electron heating. J. Geophys. Res. 74(24), 5565–5578 (1969). doi:10.1029/JA074i024p05565

    Article  ADS  Google Scholar 

  • M.W. Liemohn, J.U. Kozyra, V.K. Jordanova, G.V. Khazanov, M.F. Thomsen, T.E. Cayton, Analysis of early phase ring current recovery mechanisms during geomagnetic storms. Geophys. Res. Lett. 26, 2845 (1999)

    Article  ADS  Google Scholar 

  • G.H. Ludwig, The birth of Explorer I, in Opening Space Research: Dreams, Technology, and Scientific Discovery (AGU, Washington, 2011), pp. 245–262. doi:10.1029/2011062SP011

    Google Scholar 

  • A.T.Y. Lui, R.W. McEntire, S.M. Krimigis, Evolution of the ring current during two geomagnetic storms. J. Geophys. Res. 92(A7), 7459–7470 (1987)

    Article  ADS  Google Scholar 

  • D.G. Mitchell, K.C. Hsieh, C.C. Curtis, D.C. Hamilton, H.D. Voss, E.C. Roelof, P.C. Brandt, Imaging two geomagnetic storms in energetic neutral atoms. Geophys. Res. Lett. 28, 1151–1154 (2001). doi:10.1029/2000GL012395

    Article  ADS  Google Scholar 

  • D.G. Mitchell, P.C. Brandt, E.C. Roelof, D.C. Hamilton, K.C. Retterer, S. Mende, Global imaging of O+ from IMAGE/HENA. Space Sci. Rev. 109, 63–75 (2003). doi:10.1023/B:SPAC.0000007513.55076.00

    Article  ADS  Google Scholar 

  • R. Nakamura, W. Baumjohann, B. Klecker, Y. Bogdanova, A. Balogh, H. Reme, J.M. Bosqued, I. Dandouras, J.A. Sauvaud, K.-H. Glassmeier, L. Kistler, C. Mouikis, T.L. Zhang, H. Eichelberger, A.A. Runov, Motion of the dipolarization front during a flow burst event observed by cluster. Geophys. Res. Lett. 29(20), 1942 (2002). doi:10.1029/2002GL015763

    Article  ADS  Google Scholar 

  • E.N. Parker, Adventures with the geomagnetic field, in Discovery of the Magnetosphere, ed. by C.S. Gillmor, J.R. Sprieter (American Geophysical Union, Washington, 1997)

    Google Scholar 

  • E.C. Roelof, D.G. Mitchell, D.J. Williams, Energetic neutral atoms (E∼50 keV) from the ring current—IMP 7/8 and ISEE-1. J. Geophys. Res. 90, 10991–11008 (1985). doi:10.1029/JA090iA11p10991

    Article  ADS  Google Scholar 

  • A. Runov, V. Angelopoulos, M.I. Sitnov, V.A. Sergeev, M. Bonnell, J.P. McFadden, D. Larson, K.H. Glassmeier, U. Auster, THEMIS observations of an earthward-propagating dipolarization front. Geophys. Res. Lett. 36, L14106 (2009). doi:10.1029/2009GL038980

    Article  ADS  Google Scholar 

  • A. Runov, V. Angelopoulos, X.-Z. Zhou, X.J. Zhang, S. Li, F. Plaschke, J. Bonnell, A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res. 116(A5) (2011). doi:10.1029/2010JA016316

  • A. Schmidt, Das erdmagnetische Aussenfeld. Z. Geophys. 1, 3–13 (1924)

    Google Scholar 

  • K. Shiokawa, W. Baumjohann, G. Haerendel, Braking of high-speed flows in the near-Earth tail. Geophys. Res. Lett. 24(1), 1179 (1997). doi:10.1029/97GL01062

    Article  ADS  Google Scholar 

  • K. Shiokawa, W. Baumjohann, G. Haerendel, G. Paschmann, J.F. Fennell, E. Friis-Christensen, H. Luhr et al., High-speed ion flow, substorm current wedge, and multiple Pi 2 pulsations. J. Geophys. Res. 103(A), 4491 (1998). doi:10.1029/97JA01680

    Article  ADS  Google Scholar 

  • S.F. Singer, A new model of magnetic storms and aurorae. Eos 38, 175–190 (1957)

    Google Scholar 

  • M.I. Sitnov, N.A. Tsyganenko, A.Y. Ukhorskiy, P.C. Brandt, Dynamical data-based modeling of the storm-time geomagnetic field with enhanced spatial resolution. J. Geophys. Res. 113, A07218 (2008). doi:10.1029/2007JA013003

    Article  ADS  Google Scholar 

  • D.P. Stern, A brief history of magnetospheric physics before the spaceflight era. Rev. Geophys. 27(1), 103 (1989). doi:10.1029/RG027i001p00103

    Article  ADS  Google Scholar 

  • C. Stoermer, Sur la situation de la zone de fréquence maximum des aurores boréales d’aprés la théorie corpusculaire. C. R. Acad. Sci. 151, 736–739 (1910)

    Google Scholar 

  • C. Stoermer, Sur les trajectories des corpuscules electrises dans l’espace sous l’actions des magnetisme terrestre avec application aux auarores boréales, seconde memoire. Arch. Sci. Phys. Nat., Ser. 4 32, 117–123, 190–219, 277–314, 415–436, 505–509 (1911)

    Google Scholar 

  • C. Stoermer, Sur les trajectories des corpuscules electrises dans l’espace sous l’actions des magnetisme terrestre avec application aux auarores boréales, seconde mernoire (continued). Arch. Sci. Phys. Nat., Ser. 4 33, 51–69, 113–150 (1912)

    Google Scholar 

  • R.M. Thorne, Radiation belt dynamics: the importance of wave-particle interactions. Geophys. Res. Lett. 37(22), L22107 (2010). doi:10.1029/2010GL044990

    Article  ADS  Google Scholar 

  • D.L. Turner, Y. Shprits, M. Hartinger, V. Angelopoulos, Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nat. Phys. (2012). doi:10.1038/NPHYS2185

    Google Scholar 

  • A.Y. Ukhorskiy, B.J. Anderson, P.C. Brandt, N.A. Tsyganenko, Storm-time evolution of the outer radiation belt: transport and losses. J. Geophys. Res. 111, A11S03 (2006). doi:10.1029/2006JA011690

    Article  Google Scholar 

  • A.Y. Ukhorskiy, M.I. Sitnov, K. Takahashi, B.J. Anderson, Radial transport of radiation belt electrons due to stormtime Pc5 waves. Ann. Geophys. 27(5), 2173 (2009). doi:10.5194/angeo-27-2173-2009

    Article  ADS  Google Scholar 

  • R.A. Wolf, J.W. Freeman, B.A. Hausman, R.W. Spiro, R.V. Hilmer, R.L. Lambour, Modeling convection effects in magnetic storms, in Magnetic Storms, ed. by B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, J.K. Arballo. Geophysical Monograph Series, vol. 98 (1997), p. 161

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Manweiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Mitchell, D.G. et al. (2013). Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE). In: Fox, N., Burch, J.L. (eds) The Van Allen Probes Mission. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7433-4_8

Download citation

Publish with us

Policies and ethics