Skip to main content

Methods for Characterising Microphysical Processes in Plasmas

  • Chapter
Microphysics of Cosmic Plasmas

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 47))

  • 1432 Accesses

Abstract

Advanced spectral and statistical data analysis techniques have greatly contributed to shaping our understanding of microphysical processes in plasmas. We review some of the main techniques that allow for characterising fluctuation phenomena in geospace and in laboratory plasma observations. Special emphasis is given to the commonalities between different disciplines, which have witnessed the development of similar tools, often with differing terminologies. The review is phrased in terms of few important concepts: self-similarity, deviation from self-similarity (i.e. intermittency and coherent structures), wave-turbulence, and anomalous transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • P. Abry, P. Goncalves, P. Flandrin, Wavelets, spectrum analysis and 1/f processes, in Wavelets in Statistics, ed. by A. Antoniadis, G. Oppenheim. Lecture Notes in Statistics, vol. 103 (Springer, Berlin, 1995), pp. 15–30

    Google Scholar 

  • M. Agostini, P. Scarin, R. Cavazzana, F. Sattin, G. Serianni, M. Spolaore, N. Vianello, Edge turbulence characterization in RFX-mod with optical diagnostics. Plasma Phys. Control. Fusion 51(10), 105003 (2009). doi:10.1088/0741-3335/51/10/105003

    ADS  Google Scholar 

  • A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin, A.G. Sitenko, K.N. Stepanov, Plasma Electrodynamics. Volume 1—Linear Theory. Oxford Pergamon Press International Series on Natural Philosophy, vol. 1 (1975)

    Google Scholar 

  • A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin, A.G. Sitenko, K.N. Stepanov, Plasma Electrodynamics. Volume 2—Non-Linear Theory and Fluctuations. Oxford Pergamon Press International Series on Natural Philosophy, vol. 1 (1975)

    Google Scholar 

  • O. Alexandrova, Solar wind vs magnetosheath turbulence and Alfvén vortices. Nonlinear Process. Geophys. 15, 95–108 (2008)

    ADS  Google Scholar 

  • O. Alexandrova, J. Saur, Alfvén vortices in Saturn’s magnetosheath: cassini observations. Geophys. Res. Lett. 35, 15102 (2008). doi:10.1029/2008GL034411

    ADS  Google Scholar 

  • O. Alexandrova, C. Lacombe, A. Mangeney, Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: cluster observations. Ann. Geophys. 26, 3585–3596 (2008). doi:10.5194/angeo-26-3585-2008

    ADS  Google Scholar 

  • O. Alexandrova, A. Mangeney, M. Maksimovic, N. Cornilleau-Wehrlin, J.-M. Bosqued, M. André, Alfvén vortex filaments observed in magnetosheath downstream of a quasi-perpendicular bow shock. J. Geophys. Res. (Space Phys.) 111(A10), 12208 (2006). doi:10.1029/2006JA011934

    ADS  Google Scholar 

  • O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S.J. Schwartz, P. Robert, Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103(16), 165003 (2009). doi:10.1103/PhysRevLett.103.165003

    ADS  Google Scholar 

  • P. Amblard, S. Moussaoui, T. Dudok de Wit, J. Aboudarham, M. Kretzschmar, J. Lilensten, F. Auchère, The EUV Sun as the superposition of elementary Suns. Astron. Astrophys. 487, 13–16 (2008). doi:10.1051/0004-6361:200809588

    ADS  Google Scholar 

  • G.Y. Antar, On the origin of “intermittency” in the scrape-off layer of linear magnetic confinement devices. Phys. Plasmas 10, 3629–3634 (2003). doi:10.1063/1.1599855

    ADS  Google Scholar 

  • G.Y. Antar, P. Devynck, X. Garbet, S.C. Luckhardt, Turbulence intermittency and burst properties in tokamak scrape-off layer. Phys. Plasmas 8, 1612–1624 (2001). doi:10.1063/1.1363663

    ADS  Google Scholar 

  • M. Anton, H. Weisen, M.J. Dutch, W. von der Linden, F. Buhlmann, R. Chavan, B. Marlétaz, P. Marmillod, P. Paris, X-ray tomography on the TCV tokamak. Plasma Phys. Control. Fusion 38, 1849–1878 (1996). doi:10.1088/0741-3335/38/11/001

    ADS  Google Scholar 

  • M.J. Aschwanden, Solar image processing techniques with automated feature recognition. Sol. Phys. 262(2), 235–275 (2010). doi:10.1007/s11207-009-9474-y

    ADS  Google Scholar 

  • M.J. Aschwanden, Solar stereoscopy and tomography. Living Rev. Sol. Phys. 8(5) (2011). http://www.livingreviews.org/lrsp-2011-5

  • R. Badii, A. Politi, Complexity. Cambridge Nonlinear Science Series, vol. 6 (Cambridge Univeristy Press, Cambridge, 1999)

    MATH  Google Scholar 

  • D.N. Baker, Statistical analyses in the study of solar wind/magnetosphere coupling, in Astrophysics and Space Science Library, ed. by Y. Kamide, J.A. Slavin. Astrophysics and Space Science Library, vol. 126 (1986), pp. 17–38

    Google Scholar 

  • S.D. Bale, P.J. Kellogg, F.S. Mozer, T.S. Horbury, H. Rème, Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94(21), 215002 (2005). doi:10.1103/PhysRevLett.94.215002

    ADS  Google Scholar 

  • J.M. Beall, Y.C. Kim, E.J. Powers, Estimation of wavenumber and frequency spectra using fixed probe pairs. J. Appl. Phys. 53, 3933–3940 (1982). doi:10.1063/1.331279

    ADS  Google Scholar 

  • N. Ben Ayed, A. Kirk, B. Dudson, S. Tallents, R.G.L. Vann, H.R. Wilson, M. Team, Inter-ELM filaments and turbulent transport in the mega-amp spherical tokamak. Plasma Phys. Control. Fusion 51(3), 035016 (2009). doi:10.1088/0741-3335/51/3/035016

    ADS  Google Scholar 

  • S. Benkadda, P. Gabbai, G.M. Zaslavsky, Passive particle dynamics in a flow exhibiting transition to turbulence. Phys. Plasmas 4, 2864–2870 (1997). doi:10.1063/1.872577

    ADS  MathSciNet  Google Scholar 

  • S. Benkadda, T. Dudok de Wit, A. Verga, A. Sen, X. Garbet, Characterization of coherent structures in tokamak edge turbulence. Phys. Rev. Lett. 73, 3403–3406 (1994). doi:10.1103/PhysRevLett.73.3403

    ADS  Google Scholar 

  • R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, S. Succi, Extended self-similarity in turbulent flows. Phys. Rev. E 48, 29 (1993). doi:10.1103/PhysRevE.48.R29

    ADS  Google Scholar 

  • D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  • T. Bohr, M.H. Jensen, G. Paladin, A. Vulpiani, Dynamical Systems Approach to Turbulence. Cambridge Nonlinear Science Series, vol. 8 (Cambridge Univeristy Press, Cambridge, 2005)

    MATH  Google Scholar 

  • J.E. Borovsky, M.H. Denton, Solar wind turbulence and shear: a superposed-epoch analysis of corotating interaction regions at 1 AU. J. Geophys. Res. (Space Phys.) 115, 10101 (2010). doi:10.1029/2009JA014966

    ADS  Google Scholar 

  • R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2, 4 (2005)

    ADS  Google Scholar 

  • G.S. Bust, C.N. Mitchell, History, current state, and future directions of ionospheric imaging. Rev. Geophys. 46, 1003 (2008). doi:10.1029/2006RG000212

    ADS  Google Scholar 

  • M.D. Butala, R.J. Hewett, R.A. Frazin, F. Kamalabadi, Dynamic three-dimensional tomography of the solar corona. Sol. Phys. 262, 495–509 (2010). doi:10.1007/s11207-010-9536-1

    ADS  Google Scholar 

  • V. Carbone, Scaling exponents of the velocity structure functions in the interplanetary medium. Ann. Geophys. 12(7), 585–590 (1994). doi:10.1007/s00585-994-0585-3

    ADS  Google Scholar 

  • V. Carbone, R. Bruno, P. Veltri, Evidences for extended self-similarity in hydromagnetic turbulence. Geophys. Res. Lett. 23, 121–124 (1996). doi:10.1029/95GL03777

    ADS  Google Scholar 

  • V. Carbone, L. Sorriso-Valvo, E. Martines, V. Antoni, P. Veltri, Intermittency and turbulence in a magnetically confined fusion plasma. Phys. Rev. E 62, 49–56 (2000)

    ADS  Google Scholar 

  • V. Carbone, F. Lepreti, L. Sorriso-Valvo, P. Veltri, V. Antoni, R. Bruno, Scaling laws in plasma turbulence. Nuovo Cimento Riv. Ser. 27(8), 1–108 (2004). doi:10.1393/ncr/i2005-10003-1

    Google Scholar 

  • B.A. Carreras, V.E. Lynch, G.M. Zaslavsky, Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas 8, 5096–5103 (2001). doi:10.1063/1.1416180

    ADS  Google Scholar 

  • B.A. Carreras, B.P. van Milligen, M.A. Pedrosa, R. Balbín, C. Hidalgo, D.E. Newman, E. Sánchez, M. Frances, I. García-Cortés, J. Bleuel, M. Endler, C. Riccardi, S. Davies, G.F. Matthews, E. Martines, V. Antoni, A. Latten, T. Klinger, Self-similarity of the plasma edge fluctuations. Phys. Plasmas 5, 3632–3643 (1998). doi:10.1063/1.873081

    ADS  Google Scholar 

  • S.C. Chapman, R.M. Nicol, Generalized similarity in finite range solar wind magnetohydrodynamic turbulence. Phys. Rev. Lett. 103(24), 241101 (2009). doi:10.1103/PhysRevLett.103.241101

    ADS  Google Scholar 

  • A.C.-L. Chian, R.A. Miranda, Cluster and ACE observations of phase synchronization in intermittent magnetic field turbulence: a comparative study of shocked and unshocked solar wind. Ann. Geophys. 27, 1789–1801 (2009). doi:10.5194/angeo-27-1789-2009

    ADS  Google Scholar 

  • N. Christlieb, L. Wisotzki, G. Graßhoff, Statistical methods of automatic spectral classification and their application to the Hamburg/ESO survey. Astron. Astrophys. 391, 397–406 (2002). doi:10.1051/0004-6361:20020830

    ADS  Google Scholar 

  • A. Clauset, C. Rohilla Shalizi, M.E.J. Newman, Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009). doi:10.1137/070710111

    ADS  MATH  MathSciNet  Google Scholar 

  • A. Diallo, A. Fasoli, I. Furno, B. Labit, M. Podestà, C. Theiler, Dynamics of plasma blobs in a shear flow. Phys. Rev. Lett. 101(11), 115005 (2008). doi:10.1103/PhysRevLett.101.115005

    ADS  Google Scholar 

  • A. Dinklage, C. Wilke, G. Bonhomme, A. Atipo, Internally driven spatiotemporal irregularity in a dc glow discharge. Phys. Rev. E 62, 7219–7226 (2000). doi:10.1103/PhysRevE.62.7219

    ADS  Google Scholar 

  • D.A. D’Ippolito, J.R. Myra, S.J. Zweben, Convective transport by intermittent blob-filaments: comparison of theory and experiment. Phys. Plasmas 18(6), 060501 (2011). doi:10.1063/1.3594609

    Google Scholar 

  • T. Dudok de Wit, Spectral and statistical analysis of plasma turbulence: beyond linear techniques, in Space Plasma Simulation, ed. by J. Büchner, C. Dum, M. Scholer. Lecture Notes in Physics, vol. 615 (Springer, Berlin, 2003), pp. 315–343

    Google Scholar 

  • T. Dudok de Wit, Can high-order moments be meaningfully estimated from experimental turbulence measurements? Phys. Rev. E 70(5), 055302 (2004). doi:10.1103/PhysRevE.70.055302

    ADS  Google Scholar 

  • T. Dudok de Wit, Extracting individual contributions from their mixture: a blind source separation approach. Contrib. Plasma Phys. 51(2–3), 143–151 (2011). doi:10.1002/ctpp.201000052

    ADS  Google Scholar 

  • T. Dudok de Wit, A. Pecquet, J. Vallet, R. Lima, The biorthogonal decomposition as a tool for investigating fluctuations in plasmas. Phys. Plasmas 1, 3288–3300 (1994). doi:10.1063/1.870481

    ADS  Google Scholar 

  • T. Dudok de Wit, V.V. Krasnosel’skikh, S.D. Bale, M.W. Dunlop, H. Lühr, S.J. Schwartz, L.J.C. Woolliscroft, Determination of dispersion relations in quasi-stationary plasma turbulence using dual satellite data. Geophys. Res. Lett. 22, 2653–2656 (1995). doi:10.1029/95GL02543

    ADS  Google Scholar 

  • T. Dudok de Wit, V.V. Krasnosel’skikh, M. Dunlop, H. Lühr, Identifying nonlinear wave interactions in plasmas using two-point measurements: a case study of short large amplitude magnetic structures (SLAMS). J. Geophys. Res. 104, 17079–17090 (1999). doi:10.1029/1999JA900134

    ADS  Google Scholar 

  • B.D. Dudson, R.O. Dendy, A. Kirk, H. Meyer, G.F. Counsell, Comparison of L- and H-mode plasma edge fluctuations in MAST. Plasma Phys. Control. Fusion 47, 885–901 (2005). doi:10.1088/0741-3335/47/6/010

    ADS  Google Scholar 

  • M.W. Dunlop, R. Bingham, S. Chapman, P. Escoubet, Q. Zhang, C. Shen, J. Shi, R. Trines, R. Wicks, Z. Pu, J. de-Keyser, S. Schwartz, Z. Liu, Use of multi-point analysis and modelling to address cross-scale coupling in space plasmas: lessons from cluster. Planet. Space Sci. 59, 630–638 (2011). doi:10.1016/j.pss.2010.06.014

    ADS  Google Scholar 

  • A.I. Eriksson, Spectral analysis, in Analysis Methods for Multi-Spacecraft Data, ed. by G. Paschmann, P.W. Daly. ISSI Scientific Report SR-01, vol. 1, Amsterdam (1998), pp. 5–42

    Google Scholar 

  • M. Farge, Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395–457 (1992). doi:10.1146/annurev.fl.24.010192.002143

    ADS  MathSciNet  Google Scholar 

  • M. Farge, G. Pellegrino, K. Schneider, Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets. Phys. Rev. Lett. 87(5), 054501 (2001). doi:10.1103/PhysRevLett.87.054501

    ADS  Google Scholar 

  • M. Farge, K. Schneider, P. Devynck, Extraction of coherent bursts from turbulent edge plasma in magnetic fusion devices using orthogonal wavelets. Phys. Plasmas 13(4), 042304 (2006). doi:10.1063/1.2172350

    ADS  Google Scholar 

  • M. Farge, N.K.-R. Kevlahan, V. Perrier, K. Schneider, Turbulence analysis, modelling and computing using wavelets, in Wavelets in Physics, ed. by J.C. van den Berg (Cambridge University Press, Cambridge, 2004), p. 117. Chap. 4

    Google Scholar 

  • A. Fasoli, A. Burckel, L. Federspiel, I. Furno, K. Gustafson, D. Iraji, B. Labit, J. Loizu, G. Plyushchev, P. Ricci, C. Theiler, A. Diallo, S.H. Mueller, M. Podesta, F. Poli, Electrostatic instabilities, turbulence and fast ion interactions in the TORPEX device. Plasma Phys. Control. Fusion 52(12, Part 2), 124020 (2010). doi:10.1088/0741-3335/52/12/124020

    ADS  Google Scholar 

  • L. Fattorini, Å. Fredriksen, H.L. Pécseli, C. Riccardi, J.K. Trulsen, Turbulent transport in a toroidal magnetized plasma. Plasma Phys. Control. Fusion 54(8), 085017 (2012). doi:10.1088/0741-3335/54/8/085017

    ADS  Google Scholar 

  • U. Frisch, Turbulence, the Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  • A. Fujisawa, A review—observations of turbulence and structure in magnetized plasmas. J. Plasma Fusion Res. 5, 46 (2010). doi:10.1585/pfr.5.046

    ADS  Google Scholar 

  • I. Furno, B. Labit, M. Podestà, A. Fasoli, S.H. Müller, F.M. Poli, P. Ricci, C. Theiler, S. Brunner, A. Diallo, J. Graves, Experimental observation of the blob-generation mechanism from interchange waves in a plasma. Phys. Rev. Lett. 100(5), 055004 (2008). doi:10.1103/PhysRevLett.100.055004

    ADS  Google Scholar 

  • M.K. Georgoulis, Turbulence in the solar atmosphere: manifestations and diagnostics via solar image processing. Sol. Phys. 228, 5–27 (2005). doi:10.1007/s11207-005-2513-4

    ADS  Google Scholar 

  • J. Giacalone, Large-scale hybrid simulations of particle acceleration at a parallel shock. Astrophys. J. 609, 452–458 (2004). doi:10.1086/421043

    ADS  Google Scholar 

  • J. Giacalone, Cosmic-ray transport and interaction with shocks. Space Sci. Rev., 117 (2011). doi:10.1007/s11214-011-9763-2

  • M. Gilmore, C.X. Yu, T.L. Rhodes, W.A. Peebles, Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence. Phys. Plasmas 9, 1312–1317 (2002). doi:10.1063/1.1459707

    ADS  Google Scholar 

  • T. Goodman, S. Ahmed, S. Alberti, Y. Andrebe, C. Angioni, K. Appert, G. Arnoux, R. Belm, P. Blanchard, P. Bosshard, Y. Camenen, R. Chavan, S. Coda, I. Condrea, A. Degeling, B. Duval, P. Etienne, D. Fasel, A. Fasoli, J. Favez, I. Furno, M. Henderson, F. Hofmann, J. Hogge, J. Horacek, P. Isoz, B. Joye, A. Karpushov, I. Klimanov, P. Lavanchy, J. Lister, X. Llobet, J. Magnin, A. Manini, B. Marletaz, P. Marmillod, Y. Martin, A. Martynov, J. Mayor, J. Mlynar, J. Moret, E. Nelson-Melby, P. Nikkola, P. Paris, A. Perez, Y. Peysson, R. Pitts, A. Pochelon, L. Porte, D. Raju, H. Reimerdes, O. Sauter, A. Scarabosio, E. Scavino, S. Seo, U. Siravo, A. Sushkov, G. Tonetti, M. Tran, H. Weisen, M. Wischmeier, A. Zabolotsky, G. Zhuang, An overview of results from the TCV tokamak. Nucl. Fusion 43(12), 1619–1631 (2003). doi:10.1088/0029-5515/43/12/008

    ADS  Google Scholar 

  • A. Greco, P. Chuychai, W.H. Matthaeus, S. Servidio, P. Dmitruk, Intermittent MHD structures and classical discontinuities. Geophys. Res. Lett. 35, 19111 (2008). doi:10.1029/2008GL035454

    ADS  Google Scholar 

  • A. Greco, W.H. Matthaeus, S. Servidio, P. Chuychai, P. Dmitruk, Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence. Astrophys. J. Lett. 691, 111–114 (2009a). doi:10.1088/0004-637X/691/2/L111

    ADS  Google Scholar 

  • A. Greco, W.H. Matthaeus, S. Servidio, P. Dmitruk, Waiting-time distributions of magnetic discontinuities: clustering or Poisson process? Phys. Rev. E 80(4), 046401 (2009b). doi:10.1103/PhysRevE.80.046401

    ADS  Google Scholar 

  • A. Greco, W.H. Matthaeus, R. D’Amicis, S. Servidio, P. Dmitruk, Evidence for nonlinear development of magnetohydrodynamic scale intermittency in the inner heliosphere. Astrophys. J. 749, 105 (2012). doi:10.1088/0004-637X/749/2/105

    ADS  Google Scholar 

  • O. Grulke, J. Terry, B. LaBombard, S. Zweben, Radially propagating fluctuation structures in the scrape-off layer of Alcator C-Mod. Phys. Plasmas 13(1), 012306 (2006). doi:10.1063/1.2164991

    ADS  Google Scholar 

  • K. Gustafson, P. Ricci, I. Furno, A. Fasoli, Nondiffusive suprathermal ion transport in simple magnetized toroidal plasmas. Phys. Rev. Lett. 108(3), 035006 (2012). doi:10.1103/PhysRevLett.108.035006

    ADS  Google Scholar 

  • S. Haaland, B.U.Ö. Sonnerup, M.W. Dunlop, E. Georgescu, G. Paschmann, B. Klecker, A. Vaivads, Orientation and motion of a discontinuity from cluster curlometer capability: minimum variance of current density. Geophys. Res. Lett. 31, 10804 (2004). doi:10.1029/2004GL020001

    ADS  Google Scholar 

  • T. Hada, D. Koga, E. Yamamoto, Phase coherence of MHD waves in the solar wind. Space Sci. Rev. 107, 463–466 (2003). doi:10.1023/A:1025506124402

    ADS  Google Scholar 

  • K. Hayashi, M. Kojima, M. Tokumaru, K. Fujiki, MHD tomography using interplanetary scintillation measurement. J. Geophys. Res. (Space Phys.) 108, 1102 (2003). doi:10.1029/2002JA009567

    ADS  Google Scholar 

  • B. Hnat, S.C. Chapman, G. Rowlands, Intermittency, scaling, and the Fokker-Planck approach to fluctuations of the solar wind bulk plasma parameters as seen by the WIND spacecraft. Phys. Rev. E 67(5), 056404 (2003). doi:10.1103/PhysRevE.67.056404

    ADS  Google Scholar 

  • B. Hnat, B.D. Dudson, R.O. Dendy, G.F. Counsell, A. Kirk, MAST Team, Characterization of edge turbulence in relation to edge magnetic field configuration in ohmic L-mode plasmas in the mega amp spherical tokamak. Nucl. Fusion 48(8), 085009 (2008). doi:10.1088/0029-5515/48/8/085009

    ADS  Google Scholar 

  • M. Hoppe, C.T. Russell, Whistler mode wave packets in the Earth’s foreshock region. Nature 287, 417–420 (1980). doi:10.1038/287417a0

    ADS  Google Scholar 

  • T. Horbury, R. Wicks, C. Chen, Anisotropy in space plasma turbulence: solar wind observations. Space Sci. Rev. 172, 325–342 (2012). doi:10.1007/s11214-011-9821-9

    Google Scholar 

  • T. Huld, A.H. Nielsen, H.L. Pécseli, J.J. Rasmussen, Coherent structures in two-dimensional plasma turbulence. Phys. Fluids B 3, 1609–1625 (1991). doi:10.1063/1.859680

    ADS  Google Scholar 

  • K.-J. Hwang, M.L. Goldstein, M.M. Kuznetsova, Y. Wang, A.F. Viñas, D.G. Sibeck, The first in situ observation of Kelvin-Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions. J. Geophys. Res. (Space Phys.) 117, 8233 (2012). doi:10.1029/2011JA017256

    ADS  Google Scholar 

  • D. Iraji, I. Furno, A. Fasoli, C. Theiler, Imaging of turbulent structures and tomographic reconstruction of TORPEX plasma emissivity. Phys. Plasmas 17, 122304 (2010). doi:10.1063/1.3523052

    ADS  Google Scholar 

  • B.V. Jackson, P.P. Hick, A. Buffington, M.M. Bisi, J.M. Clover, M. Tokumaru, M. Kojima, K. Fujiki, Three-dimensional reconstruction of heliospheric structure using iterative tomography: a review. J. Atmos. Sol.-Terr. Phys. 73, 1214–1227 (2011). doi:10.1016/j.jastp.2010.10.007

    ADS  Google Scholar 

  • H. Johnsen, H.L. Pécseli, J. Trulsen, Conditional eddies in plasma turbulence. Phys. Fluids 30, 2239–2254 (1987). doi:10.1063/1.866158

    ADS  Google Scholar 

  • H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, 2nd edn. Cambridge Nonlinear Science Series, vol. 7 (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  • N. Katz, J. Egedal, W. Fox, A. Le, M. Porkolab, Experiments on the propagation of plasma filaments. Phys. Rev. Lett. 101(1), 015003 (2008). doi:10.1103/PhysRevLett.101.015003

    ADS  Google Scholar 

  • C.F. Kennel, H.E. Petschek, Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1 (1966)

    ADS  Google Scholar 

  • L. Kersley, S.E. Pryse, I.K. Walker, J.A.T. Heaton, C.N. Mitchell, M.J. Williams, C.A. Willson, Imaging of electron density troughs by tomographic techniques. Radio Sci. 32(4), 1607–1621 (1997). doi:10.1029/97RS00310

    ADS  Google Scholar 

  • Y. Khotyaintsev, S. Buchert, K. Stasiewicz, A. Vaivads, S. Savin, V.O. Papitashvili, C.J. Farrugia, B. Popielawska, Y.-K. Tung, Transient reconnection in the cusp during strongly negative IMF B y . J. Geophys. Res. (Space Phys.) 109, 4204 (2004). doi:10.1029/2003JA009908

    ADS  Google Scholar 

  • J.S. Kim, R.J. Fonck, R.D. Durst, E. Fernandez, P.W. Terry, S.F. Paul, M.C. Zarnstorff, Measurements of nonlinear energy transfer in turbulence in the tokamak fusion test reactor. Phys. Rev. Lett. 79, 841–844 (1997). doi:10.1103/PhysRevLett.79.841

    ADS  Google Scholar 

  • J.S. Kim, D.H. Edgell, J.M. Greene, E.J. Strait, M.S. Chance, MHD mode identification of tokamak plasmas from Mirnov signals. Plasma Phys. Control. Fusion 41, 1399–1420 (1999). doi:10.1088/0741-3335/41/11/307

    ADS  Google Scholar 

  • Y.C. Kim, E.J. Powers, Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Trans. Plasma Sci. PS-7, 120–131 (1979)

    ADS  Google Scholar 

  • A. Kirk, N. Ben Ayed, G. Counsell, B. Dudson, T. Eich, A. Herrmann, B. Koch, R. Martin, A. Meakins, S. Saarelma, R. Scannell, S. Tallents, M. Walsh, H.R. Wilson, M. Team, Filament structures at the plasma edge on MAST. Plasma Phys. Control. Fusion 48(12B, SI), 433–441 (2006). doi:10.1088/0741-3335/48/12B/S41

    Google Scholar 

  • K.H. Kiyani, S.C. Chapman, N.W. Watkins, Pseudononstationarity in the scaling exponents of finite-interval time series. Phys. Rev. E 79(3), 036109 (2009). doi:10.1103/PhysRevE.79.036109

    ADS  Google Scholar 

  • K.H. Kiyani, S.C. Chapman, F. Sahraoui, B. Hnat, O. Fauvarque, Y.V. Khotyaintsev, Enhanced magnetic compressibility and isotropic scale invariance at sub-ion larmor scales in solar wind turbulence. Astrophys. J. 763, 10 (2013). doi:10.1088/0004-637X/763/1/10

    ADS  Google Scholar 

  • K. Kiyani, S.C. Chapman, B. Hnat, R.M. Nicol, Self-similar signature of the active solar corona within the inertial range of solar-wind turbulence. Phys. Rev. Lett. 98(21), 211101 (2007). doi:10.1103/PhysRevLett.98.211101

    ADS  Google Scholar 

  • A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941). Reprinted in Proc. R. Soc. Lond., Ser. A 434, 9–13 (1991)

    ADS  Google Scholar 

  • A.N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85 (1962). doi:10.1017/S0022112062000518

    ADS  MATH  MathSciNet  Google Scholar 

  • S.I. Krasheninnikov, D.A. D’Ippolito, J.R. Myra, Recent theoretical progress in understanding coherent structures in edge and SOL turbulence. J. Plasma Phys. 74, 679–717 (2008)

    ADS  Google Scholar 

  • V. Kravtchenko-Berejnoi, F. Lefeuvre, V. Krasnoselskikh, D. Lagoutte, On the use of tricoherent analysis to detect non-linear wave-wave interactions. Signal Process. 42(3), 291–309 (1995). doi:10.1016/0165-1684(94)00136-N

    MATH  Google Scholar 

  • A. Lazurenko, G. Coduti, S. Mazouffre, G. Bonhomme, Dispersion relation of high-frequency plasma oscillations in hall thrusters. Phys. Plasmas 15(3), 034502 (2008). doi:10.1063/1.2889424

    ADS  Google Scholar 

  • M.P. Leubner, Z. Vörös, A nonextensive entropy approach to solar wind intermittency. Astrophys. J. 618(1), 547 (2005). doi:10.1086/425893

    ADS  Google Scholar 

  • R.P. Lin, Non-relativistic solar electrons. Space Sci. Rev. 16, 189–256 (1974). doi:10.1007/BF00240886

    ADS  Google Scholar 

  • E.T. Lundberg, P.M. Kintner, S.P. Powell, K.A. Lynch, Multipayload interferometric wave vector determination of auroral hiss. J. Geophys. Res. (Space Phys.) 117, 2306 (2012). doi:10.1029/2011JA017037

    ADS  Google Scholar 

  • A. Madon, T. Klinger, Spatio-temporal bifurcations in plasma drift-waves. Physica D 91(3), 301–316 (1996). doi:10.1016/0167-2789(95)00266-9

    MATH  Google Scholar 

  • A. Mangeney, C. Salem, P.L. Veltri, B. Cecconi, Intermittency in the solar wind turbulence and the haar wavelet transform, in Sheffield Space Plasma Meeting: Multipoint Measurements Versus Theory, ed. by B. Warmbein. ESA Special Pub., vol. 492 (2001), p. 53

    Google Scholar 

  • A. Manini, J. Moret, F. Ryter, the ASDEX Upgrade Team, Signal processing techniques based on singular value decomposition applied to modulated ECH experiments. Nucl. Fusion 43, 490–511 (2003). doi:10.1088/0029-5515/43/6/312

    ADS  Google Scholar 

  • R.J. Maqueda, D.P. Stotler, N. Team, Intermittent divertor filaments in the national spherical torus experiment and their relation to midplane blobs. Nucl. Fusion 50(7), 075002 (2010). doi:10.1088/0029-5515/50/7/075002

    ADS  Google Scholar 

  • E. Marsch, C.-Y. Tu, Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Nonlinear Process. Geophys. 4, 101–124 (1997)

    ADS  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, Stationarity of magnetohydrodynamic fluctuations in the solar wind. J. Geophys. Res. (Space Phys.) 87, 10347–10354 (1982). doi:10.1029/JA087iA12p10347

    ADS  Google Scholar 

  • W.H. Matthaeus, M. Velli, Who needs turbulence? Space Sci. Rev. 160(1–4), 145–168 (2011). doi:10.1007/s11214-011-9793-9

    ADS  Google Scholar 

  • N. Meunier, J. Zhao, Observations of photospheric dynamics and magnetic fields: from large-scale to small-scale flows. Space Sci. Rev. 144, 127–149 (2009). doi:10.1007/s11214-008-9472-7

    ADS  Google Scholar 

  • J.A. Mier, R. Sánchez, L. García, B.A. Carreras, D.E. Newman, Characterization of nondiffusive transport in plasma turbulence via a novel Lagrangian method. Phys. Rev. Lett. 101, 165001 (2008). doi:10.1103/PhysRevLett.101.165001

    ADS  Google Scholar 

  • S.H. Müller, A. Diallo, A. Fasoli, I. Furno, B. Labit, G. Plyushchev, M. Podestà, F.M. Poli, Probabilistic analysis of turbulent structures from two-dimensional plasma imaging. Phys. Plasmas 13(10), 100701 (2006). doi:10.1063/1.2351960

    Google Scholar 

  • S.L. Musher, A.M. Rubenchik, V.E. Zakharov, Weak langmuir turbulence. Phys. Rep. 252, 177–274 (1995). doi:10.1016/0370-1573(94)00071-A

    ADS  Google Scholar 

  • J.F. Muzy, E. Bacry, A. Arneodo, Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method. Phys. Rev. E 47, 875–884 (1993). doi:10.1103/PhysRevE.47.875

    ADS  Google Scholar 

  • C. Nardone, Multichannel fluctuation data analysis by the singular value decomposition method. Application to MHD modes in JET. Plasma Phys. Control. Fusion 34(9), 1447 (1992). doi:10.1088/0741-3335/34/9/001

    ADS  Google Scholar 

  • D.E. Newman, B.A. Carreras, P.H. Diamond, T.S. Hahm, The dynamics of marginality and self-organized criticality as a paradigm for turbulent transport. Phys. Plasmas 3, 1858–1866 (1996). doi:10.1063/1.871681

    ADS  Google Scholar 

  • R. Nguyen van yen, D. del-Castillo-Negrete, K. Schneider, M. Farge, G. Chen, Wavelet-based density estimation for noise reduction in plasma simulations using particles. J. Comput. Phys. 229(8), 2821–2839 (2010). doi:10.1016/j.jcp.2009.12.010

    ADS  MATH  MathSciNet  Google Scholar 

  • S. Niedner, H.-G. Schuster, T. Klinger, G. Bonhomme, Symmetry breaking in ionization wave turbulence. Phys. Rev. E 59, 52–59 (1999). doi:10.1103/PhysRevE.59.52

    ADS  Google Scholar 

  • G. Paschmann, P.W. Daly (eds.), Analysis Methods for Multi-spacecraft Data, 2nd edn. ISSI Scientific Report SR-001 (Springer, Amsterdam, 2000). http://www.issibern.ch/publications/sr.html

    Google Scholar 

  • G. Paschmann, P.W. Daly (eds.), Multi-Spacecraft Analysis Methods Revisited. ISSI Scientific Report SR-008 (Springer, Amsterdam, 2008). http://www.issibern.ch/publications/sr.html

    Google Scholar 

  • S. Perri, A. Balogh, Characterization of transitions in the solar wind parameters. Astrophys. J. 710, 1286–1294 (2010a). doi:10.1088/0004-637X/710/2/1286

    ADS  Google Scholar 

  • S. Perri, A. Balogh, Stationarity in solar wind flows. Astrophys. J. 714, 937–943 (2010b). doi:10.1088/0004-637X/714/1/937

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Evidence of superdiffusive transport of electrons accelerated at interplanetary shocks. Astrophys. J. Lett. 671, 177–180 (2007). doi:10.1086/525523

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Superdiffusive transport of electrons accelerated at corotating interaction regions. J. Geophys. Res. (Space Phys.) 113, 3107 (2008). doi:10.1029/2007JA012695

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Ion and electron superdiffusive transport in the interplanetary space. Adv. Space Res. 44, 465–470 (2009a). doi:10.1016/j.asr.2009.04.017

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Ion superdiffusion at the solar wind termination shock. Astrophys. J. Lett. 693, 118–121 (2009b). doi:10.1088/0004-637X/693/2/L118

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Magnetic variances and pitch-angle scattering times upstream of interplanetary shocks. Astrophys. J. 754, 8 (2012a). doi:10.1088/0004-637X/754/1/8

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Superdiffusive shock acceleration. Astrophys. J. 750, 87 (2012b)

    ADS  Google Scholar 

  • D. Perrone, R.O. Dendy, I. Furno, G. Zimbardo, Nonclassical transport and particle-field coupling: from laboratory plasmas to the solar wind. Space Sci. Rev. (2013, accepted)

    Google Scholar 

  • J.L. Pinçon, F. Lefeuvre, Local characterization of homogeneous turbulence in a space plasma from simultaneous measurements of field components at several points in space. J. Geophys. Res. 96, 1789–1802 (1991)

    ADS  Google Scholar 

  • F.M. Poli, S. Brunner, A. Diallo, A. Fasoli, I. Furno, B. Labit, S.H. Müller, G. Plyushchev, M. Podestà, Experimental characterization of drift-interchange instabilities in a simple toroidal plasma. Phys. Plasmas 13(10), 102104 (2006). doi:10.1063/1.2356483

    ADS  Google Scholar 

  • D.V. Reames, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413–491 (1999). doi:10.1023/A:1005105831781

    ADS  Google Scholar 

  • A. Retinò, D. Sundkvist, A. Vaivads, F. Mozer, M. André, C.J. Owen, In situ evidence of magnetic reconnection in turbulent plasma. Nat. Phys. 3, 236–238 (2007). doi:10.1038/nphys574

    Google Scholar 

  • C.P. Ritz, E.J. Powers, Estimation of nonlinear transfer functions for fully developed turbulence. Physica D Nonlinear Phenom. 20, 320–334 (1986). doi:10.1016/0167-2789(86)90036-9

    ADS  MATH  Google Scholar 

  • C.P. Ritz, E.J. Powers, T.L. Rhodes, R.D. Bengtson, K.W. Gentle, H. Lin, P.E. Phillips, A.J. Wootton, D.L. Brower, N.C. Luhmann Jr., W.A. Peebles, P.M. Schoch, R.L. Hickok, Advanced plasma fluctuation analysis techniques and their impact on fusion research. Rev. Sci. Instrum. 59, 1739–1744 (1988). doi:10.1063/1.1140098

    ADS  Google Scholar 

  • F. Sahraoui, Diagnosis of magnetic structures and intermittency in space-plasma turbulence using the technique of surrogate data. Phys. Rev. E 78(2), 026402 (2008). doi:10.1103/PhysRevE.78.026402

    ADS  Google Scholar 

  • F. Sahraoui, G. Belmont, L. Rezeau, N. Cornilleau-Wehrlin, J.L. Pinçon, A. Balogh, Anisotropic turbulent spectra in the terrestrial magnetosheath as seen by the cluster spacecraft. Phys. Rev. Lett. 96(7), 075002 (2006). doi:10.1103/PhysRevLett.96.075002

    ADS  Google Scholar 

  • F. Sahraoui, M.L. Goldstein, G. Belmont, A. Roux, L. Rezeau, P. Canu, P. Robert, N. Cornilleau-Wehrlin, O. Le Contel, T. Dudok de Wit, J. Pinçon, K. Kiyani, Multi-spacecraft investigation of space turbulence: lessons from cluster and input to the cross-scale mission. Planet. Space Sci. 59, 585–591 (2011). doi:10.1016/j.pss.2010.06.001

    ADS  Google Scholar 

  • T. Schreiber, A. Schmitz, Surrogate time series. Physica D 142, 346–382 (2000). doi:10.1016/S0167-2789(00)00043-9

    ADS  MATH  MathSciNet  Google Scholar 

  • A. Shalchi, I. Kourakis, A new theory for perpendicular transport of cosmic rays. Astron. Astrophys. 470, 405–409 (2007). doi:10.1051/0004-6361:20077260

    ADS  MATH  Google Scholar 

  • C. Shen, X. Li, M. Dunlop, Z.X. Liu, A. Balogh, D.N. Baker, M. Hapgood, X. Wang, Analyses on the geometrical structure of magnetic field in the current sheet based on cluster measurements. J. Geophys. Res. (Space Phys.) 108, 1168 (2003). doi:10.1029/2002JA009612

    ADS  Google Scholar 

  • M.F. Shlesinger, G.M. Zaslavsky, J. Klafter, Strange kinetics. Nature 363, 31–37 (1993). doi:10.1038/363031a0

    ADS  Google Scholar 

  • B.U.Ö. Sonnerup, M. Scheible, Minimum and maximum variance analysis. In: ISSI Scientific Reports Series vol. 1 (1998), pp. 185–220

    Google Scholar 

  • L. Sorriso-Valvo, V. Carbone, P. Veltri, G. Consolini, R. Bruno, Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys. Res. Lett. 26, 1801–1804 (1999). doi:10.1029/1999GL900270

    ADS  Google Scholar 

  • L. Sorriso-Valvo, V. Carbone, P. Giuliani, P. Veltri, R. Bruno, V. Antoni, E. Martines, Intermittency in plasma turbulence. Planet. Space Sci. 49, 1193–1200 (2001). doi:10.1016/S0032-0633(01)00060-5

    ADS  Google Scholar 

  • J. Souček, T. Dudok de Wit, V. Krasnoselskikh, A. Volokitin, Statistical analysis of nonlinear wave interactions in simulated langmuir turbulence data. Ann. Geophys. 21, 681–692 (2003)

    ADS  Google Scholar 

  • U. Stroth, F. Greiner, C. Lechte, N. Mahdizadeh, K. Rahbarnia, M. Ramisch, Study of edge turbulence in dimensionally similar laboratory plasmas. Phys. Plasmas 11, 2558–2564 (2004). doi:10.1063/1.1688789

    ADS  Google Scholar 

  • D. Sundkvist, V. Krasnoselskikh, P.K. Shukla, A. Vaivads, M. André, S. Buchert, H. Rème, In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence. Nature 436, 825–828 (2005). doi:10.1038/nature03931

    ADS  Google Scholar 

  • J. Svensson, A. Werner, J. Contributors, Current tomography for axisymmetric plasmas. Plasma Phys. Control. Fusion 50(8), 085002 (2008). doi:10.1088/0741-3335/50/8/085002

    ADS  Google Scholar 

  • J. Terry, S. Zweben, K. Hallatschek, B. LaBombard, R. Maqueda, B. Bai, C. Boswell, M. Greenwald, D. Kopon, W. Nevins, C. Pitcher, B. Rogers, D. Stotler, X. Xu, Observations of the turbulence in the scrape-off-layer of Alcator C-Mod and comparisons with simulation. Phys. Plasmas 10(5, Part 2), 1739–1747 (2003). doi:10.1063/1.1564090

    ADS  Google Scholar 

  • C. Theiler, I. Furno, P. Ricci, A. Fasoli, B. Labit, S.H. Mueller, G. Plyushchev, Cross-field motion of plasma blobs in an open magnetic field line configuration. Phys. Rev. Lett. 103, 065001 (2009). doi:10.1103/PhysRevLett.103.065001

    ADS  Google Scholar 

  • A. Tjulin, J.-L. Pinçon, F. Sahraoui, M. André, N. Cornilleau-Wehrlin, The k-filtering technique applied to wave electric and magnetic field measurements from the cluster satellites. J. Geophys. Res. (Space Phys.) 110, 11224 (2005). doi:10.1029/2005JA011125

    ADS  Google Scholar 

  • C. Torrence, G.P. Compo, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998). doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

    ADS  Google Scholar 

  • C.-Y. Tu, E. Marsch, MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73, 1–2 (1995)

    ADS  Google Scholar 

  • G.R. Tynan, A. Fujisawa, G. McKee, A review of experimental drift turbulence studies. Plasma Phys. Control. Fusion 51(11), 113001 (2009). doi:10.1088/0741-3335/51/11/113001

    ADS  Google Scholar 

  • M. Škorić, M. Rajković, Characterization of intermittency in plasma edge turbulence. Contrib. Plasma Phys. 48, 37–41 (2008). doi:10.1002/ctpp.200810006

    ADS  Google Scholar 

  • J.C. van den Berg (ed.), Wavelets in Physics (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  • D. Vassiliadis, Systems theory for geospace plasma dynamics. Rev. Geophys. 44, 2002 (2006). doi:10.1029/2004RG000161

    ADS  Google Scholar 

  • J. Vega, A. Pereira, A. Portas, S. Dormido-Canto, G. Farias, R. Dormido, J. Sánchez, N. Duro, M. Santos, E. Sanchez, G. Pajares, Data mining technique for fast retrieval of similar waveforms in fusion massive databases. Fusion Eng. Des. 83(1), 132–139 (2008). doi:10.1016/j.fusengdes.2007.09.011

    Google Scholar 

  • P. Veltri, MHD turbulence in the solar wind: self-similarity, intermittency and coherent structures. Plasma Phys. Control. Fusion 41, 787–795 (1999). doi:10.1088/0741-3335/41/3A/071

    ADS  Google Scholar 

  • P. Veltri, A. Mangeney, Scaling laws and intermittent structures in solar wind MHD turbulence, in Solar Wind Nine, ed. by S.R. Habbal, R. Esser, J.V. Hollweg, P.A. Isenberg. American Institute of Physics Conference Series, vol. 471 (1999), p. 543

    Google Scholar 

  • J. Vogt, A. Albert, O. Marghitu, Analysis of three-spacecraft data using planar reciprocal vectors: methodological framework and spatial gradient estimation. Ann. Geophys. 27, 3249–3273 (2009)

    ADS  Google Scholar 

  • U. von Toussaint, Bayesian inference in physics. Rev. Mod. Phys. 83, 943–999 (2011). doi:10.1103/RevModPhys.83.943

    ADS  Google Scholar 

  • A. Wernik, Methods of data analysis for resolving nonlinear phenomena, in Modern Ionospheric Science, ed. by H. Kohl, R. Rüster, K. Schlegel (European Geophysical Society, Katlenburg-Lindau, 1996), pp. 322–345

    Google Scholar 

  • T. Windisch, O. Grulke, T. Klinger, Radial propagation of structures in drift wave turbulence. Phys. Plasmas 13(12), 122303 (2006). doi:10.1063/1.2400845

    ADS  Google Scholar 

  • C.X. Yu, M. Gilmore, W.A. Peebles, T.L. Rhodes, Structure function analysis of long-range correlations in plasma turbulence. Phys. Plasmas 10, 2772–2779 (2003). doi:10.1063/1.1583711

    ADS  Google Scholar 

  • G.M. Zaslavskii, R.Z. Sagdeev, D.K. Chaikovskii, A.A. Chernikov, Chaos and two-dimensional random walk in periodic and quasi-periodic fields. J. Exp. Theor. Phys. 95, 1723–1733 (1989)

    Google Scholar 

  • G.M. Zaslavsky, D. Stevens, H. Weitzner, Self-similar transport in incomplete chaos. Phys. Rev. E 48, 1683–1694 (1993). doi:10.1103/PhysRevE.48.1683

    ADS  MathSciNet  Google Scholar 

  • G. Zimbardo, Anomalous particle diffusion and Lévy random walk of magnetic field lines in three-dimensional solar wind turbulence. Plasma Phys. Control. Fusion 47, 755–767 (2005). doi:10.1088/0741-3335/47/12B/S57

    Google Scholar 

  • G. Zimbardo, P. Pommois, P. Veltri, Superdiffusive and subdiffusive transport of energetic particles in solar wind anisotropic magnetic turbulence. Astrophys. J. 639, 91–94 (2006). doi:10.1086/502676

    ADS  Google Scholar 

  • G. Zimbardo, A. Greco, L. Sorriso-Valvo, S. Perri, Z. Vörös, G. Aburjania, K. Chargazia, O. Alexandrova, Magnetic turbulence in the geospace environment. Space Sci. Rev. 156, 89–134 (2010). doi:10.1007/s11214-010-9692-5

    ADS  Google Scholar 

  • G. Zimbardo, S. Perri, P. Pommois, P. Veltri, Anomalous particle transport in the heliosphere. Adv. Space Res. 49, 1633–1642 (2012). doi:10.1016/j.asr.2011.10.022

    ADS  Google Scholar 

  • G. Zumofen, J. Klafter, Scale-invariant motion in intermittent chaotic systems. Phys. Rev. E 47, 851–863 (1993). doi:10.1103/PhysRevE.47.851

    ADS  Google Scholar 

  • S.J. Zweben, Search for coherent structure within tokamak plasma turbulence. Phys. Fluids 28, 974–982 (1985). doi:10.1063/1.865069

    ADS  Google Scholar 

  • S.J. Zweben, J.A. Boedo, O. Grulke, C. Hidalgo, B. La Bombard, R.J. Maqueda, P. Scarin, J.L. Terry, Edge turbulence measurements in toroidal fusion devices. Plasma Phys. Control. Fusion 49, 1–23 (2007). doi:10.1088/0741-3335/49/7/S01

    ADS  Google Scholar 

  • S.J. Zweben, J.L. Terry, B. LaBombard, M. Agostini, M. Greenwald, O. Grulke, J.W. Hughes, D.A. D’Ippolito, S.I. Krasheninnikov, J.R. Myra, D.A. Russell, D.P. Stotler, M. Umansky, Estimate of convective radial transport due to SOL turbulence as measured by GPI in Alcator C-Mod. J. Nucl. Mater. 415(1, S), 463–466 (2011). doi:10.1016/j.jnucmat.2010.08.018

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dudok de Wit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dudok de Wit, T., Alexandrova, O., Furno, I., Sorriso-Valvo, L., Zimbardo, G. (2013). Methods for Characterising Microphysical Processes in Plasmas. In: Balogh, A., Bykov, A., Cargill, P., Dendy, R., Dudok de Wit, T., Raymond, J. (eds) Microphysics of Cosmic Plasmas. Space Sciences Series of ISSI, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7413-6_21

Download citation

Publish with us

Policies and ethics