Skip to main content

More Stochastic Scheduling Models

  • Chapter
  • First Online:

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 207))

Abstract

This chapter discusses some other scheduling problems and models that do not fall into the categories presented in Chapters 2–9. Section 10.1 considers the problem to minimize a random variable of performance measure under stochastic order, which produces stronger results than the common approach of minimizing the expected value of the measure. Section 10.2 introduces the concept of “team-work tasks”, in which each job is processed by a team of different processors working on designated components of the job, and derives a number of corresponding optimal scheduling policies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alidaee, B., & Womer, N. K. (1999). Scheduling with time dependent processing times: Review and extensions. Journal of the Operational Research Society, 50, 711–720.

    Article  Google Scholar 

  • Amoura, A. K., Bampis, E., Kenyon, C., & Manoussakis, Y. (2002). Scheduling independent multiprocessor tasks. Algorithmica, 32, 247–261.

    Article  Google Scholar 

  • Arbib, C., Pacciarelli, D., & Smriglio, S. (1999). A three-dimensional matching model for perishable production scheduling. Discrete Applied Mathematics, 92, 1–15.

    Article  Google Scholar 

  • Bachman, A., Janiak, A., & Kovalyov, M. Y. (2002). Minimizing the total weighted completion time of deteriorating jobs. Information Processing Letters, 81, 81–84.

    Article  Google Scholar 

  • Bianco, L., Blazewicz, J., Dell’Olmo, P., & Drozdowski, M. (1995). Scheduling multiprocessor tasks on a dynamic configuration of dedicated processors. Annals of Operations Research, 58, 493–517.

    Article  Google Scholar 

  • Blackburn, J., & Scudder, G. (2009). Supply chain strategies for perishable products: The case of fresh produce. Production and Operations Management, 18, 129–137.

    Article  Google Scholar 

  • Blazewicz, J., Ecker, K., Schmidt, G., & Weglarz, J. (1993). Scheduling in computer and manufacturing systems. Berlin: Springer.

    Book  Google Scholar 

  • Blazewicz, J., Drozdowski, M., & Weglarz, J. (1994). Scheduling multiprocessor tasks – A survey. Microcomputer Applications, 13, 89–97.

    Google Scholar 

  • Boxma, O. J., & Forst, F. G. (1986). Minimizing the expected weighted number of tardy jobs in stochastic flow shops. Operations Research Letters, 5, 119–126.

    Article  Google Scholar 

  • Brown, M., & Solomon, H. (1973). Optimal issuing policies under stochastic field lives. Journal of Applied Probability, 10, 761–768.

    Article  Google Scholar 

  • Browne, S., & Yechiali, U. (1989). Dynamic priority rules for cyclic type queues. Advances in Applied Probability, 10, 432–450.

    Article  Google Scholar 

  • Browne, S., & Yechiali, U. (1990). Scheduling deteriorating jobs on a single processor. Operations Research, 38, 495–498.

    Article  Google Scholar 

  • Cai, X.Q.i, & Zhou, X. (1999). Stochastic scheduling on parallel machine subject to random breakdowns to minimize expected costs for earliness and tardy cost. Operations Research, 47, 422–437.

    Google Scholar 

  • Cai, X.Q.i, & Zhou, X. (2005). Single-machine scheduling with exponential processing times and general stochastic cost functions. Journal of Global Optimization, 31, 317–332.

    Google Scholar 

  • Cai, X.Q.i, & Zhou, X. (2013, to appear). Optimal policies for perishable products when transportation to export market is disrupted. Production and Operations Management. doi: 10.111/poms.12080.

    Google Scholar 

  • Cai, X. Q., & Zhou, X. (2004). Deterministic and stochastic scheduling with team-work tasks. Naval Research Logistics, 51, 818–840.

    Article  Google Scholar 

  • Cai, X. Q., Lee, C.-Y., & Li, C. L. (1998). Minimizing total flow time in two-processor task systems with prespecified processor allocations. Naval Research Logistics, 45, 231–242

    Article  Google Scholar 

  • Cai, X. Q., Lee, C.-Y., & Wong, T. L. (2000). Multi-processor task scheduling to minimize the maximum tardiness and the total completion time. IEEE Transactions on Robotics and Automation, 16, 824–830.

    Article  Google Scholar 

  • Chang, C., & Yao, D. (1993). Rearrangement, majorization and stochastic scheduling. Mathmatics of Operations Research, 18(3), 658–684.

    Article  Google Scholar 

  • Chopra, S., & Meindl, P. (2001). Supply chain management: Strategy, planning, and operation. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Cooper, W. L. (2001). Pathwise properties and performance bounds for a perishable inventory system. Operations Research, 49, 455–466.

    Article  Google Scholar 

  • Drozdowski, M. (1996). Scheduling multiprocessor tasks – An overview. European Journal of Operational Research, 94, 215–230.

    Article  Google Scholar 

  • Fawcett, P., Mcleish, R., & Ogden, I. (1992). Logistics management. Harlow: Prentice Hall.

    Google Scholar 

  • Ferguson, M., & Koenigsberg, O. (2007). How should a firm manage deteriorating inventory? Production and Operations Management, 16, 306–321.

    Article  Google Scholar 

  • Gehringer, E. F., Siewiorek, D. P., & Segall, Z. (1987). Parallel processing: The Cm experience. Bedford: Digital Press.

    Google Scholar 

  • Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134, 1–16.

    Article  Google Scholar 

  • Hall, N. G., & Potts, C. N. (2004). Rescheduling for new orders. Operations Research, 52, 440–453.

    Article  Google Scholar 

  • Herrmann, J. W. (2006). Rescheduling strategies, policies, and methods. In J. W. Herrmann (Ed.), Handbook of production scheduling (pp. 135–148). New York: Springer.

    Google Scholar 

  • Hoogeveen, H., Lente, C., & T’kindt, V. (2012). Rescheduling for new orders on a single machine with setup times. European Journal of Operational Research, 223, 40–46.

    Article  Google Scholar 

  • Hopkins, A. L., Smith, T. B., III & Lala, J. H. (1978). FTMP – A highly reliable fault-tolerant multiprocessor for aircraft. Proceedings of the IEEE, 66(10), 1221–1239.

    Article  Google Scholar 

  • Hsu, V. N. (2000). Dynamic economic lot size model with perishable inventory. Management Science, 46, 1159–1169.

    Article  Google Scholar 

  • Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness (Research Report 43). Management Science Research Project, UCLA.

    Google Scholar 

  • Krawczyk, H., & Kubale, M. (1985). An approximation algorithm for diagnostic test scheduling in multi-computer systems. IEEE Transactions on Computers, 34, 869–872.

    Article  Google Scholar 

  • Kuo, W., Chien, W. T. K., & Kim, T. (1998). Reliability, yield, and stress burn-in. Boston: Kluwer.

    Book  Google Scholar 

  • Liskyla-Peuralahti, J., Spies, M., & Tapaninen, U. (2011). Transport vulnerabilities and critical industries: Experiences from a Finnish stevedore strike. International Journal of Risk Assessment and Management, 15, 222–240.

    Article  Google Scholar 

  • Mosheiov, G. (1991). V-shaped policies for scheduling deteriorating jobs. Operations Research, 39, 979–991.

    Article  Google Scholar 

  • Nahmias, S. (1982). Perishable inventory theory: A review. Operations Research, 30, 680–708.

    Article  Google Scholar 

  • Nandakumar, P., & Morton, T. E. (1993). Near myopic heuristics for the fixed-life perishability problem. Management Science, 39, 1490–1498.

    Article  Google Scholar 

  • Pinedo, M. (1983). Stochastic scheduling with release dates and due dates. Operations Research, 31, 559–572.

    Article  Google Scholar 

  • Pinedo, M. (2002). Scheduling: Theory, algorithms, and systems (2nd ed.). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Raafat, F. (1991). Survey of literature on continuously deteriorating inventory models. Journal of the Operational Research Society, 42, 27–37.

    Article  Google Scholar 

  • Sarin, S. C., Erel, E., & Steiner, G. (1991). Sequencing jobs on a single machine with a common due date and stochastic processing times. European Journal of Operational Research, 51, 287–302.

    Article  Google Scholar 

  • Shaked, M., & Shanthikumar, J. G. (1994). Stochastic orders and their applications. Boston: Academic.

    Google Scholar 

  • Shanthikumar, J. G., & Yao, D. D. (1991). Bivariate characterization of some stochastic order relations. Advances in Applied Probability, 23, 642–659.

    Article  Google Scholar 

  • Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., & Sinsoysal, B. (2010, submitted). OR/MS models for supply chain disruptions: A review. Social Science Research Network. http://dx.doi.org/10.2139/ssrn.1689882.

  • Starbird, S. A. (1988). Optimal loading sequences for fresh-apple storage facilities. Operations Research, 39, 911–917.

    Article  Google Scholar 

  • Stevenson, W. J. (2009). Operations management (10th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Tadei, R., Trubian, M., Avendano, J. L., DellaCroce, F., & Menga, G. (1995). Aggregate planning and scheduling in the food industry: A case study. European Journal of Operational Research, 87, 564–573.

    Article  Google Scholar 

  • Vakharia, A. J., & Yenipazarli, A. (2009). Managing supply chain disruptions. Foundations and Trends in Technology, Information and Operations Management, 2, 243–325.

    Article  Google Scholar 

  • Wilson, M. C. (2007). The impact of transportation disruptions on supply chain performance. Transportation Research Part E: Logistics and Transportation Review, 43, 295–320.

    Article  Google Scholar 

  • Zhao, C., & Tang, H. (2010). Rescheduling problems with deteriorating jobs under disruptions. Applied Mathematical Modelling, 34, 238–243.

    Article  Google Scholar 

  • Zhou, X., & Cai, X. Q. (1997). General stochastic single-machine scheduling with regular cost functions. Mathematical and Computer Modeling, 26, 95–108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cai, X., Wu, X., Zhou, X. (2014). More Stochastic Scheduling Models. In: Optimal Stochastic Scheduling. International Series in Operations Research & Management Science, vol 207. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7405-1_10

Download citation

Publish with us

Policies and ethics