Skip to main content
  • 31 Accesses

Abstract

In the early days of mammalian genetics, the domestic guinea-pig featured almost as prominently as other laboratory rodents but, latterly, the animal has receded from favour. In spite of several systematic searches for possible linkage among the known mutants, the results have been largely negative. However, even negative results are not devoid of value since these imply that a variety of chromosome segments are tagged by genes. The relatively large number of chromosomes is probably the main determinant in the absence of linkage. Some 25 mutant genes have been described for the guinea-pig if the majority of genes described by Ibsen (1932) are regarded merely as provisional. Out of the positively recognized mutants, 15 have been employed in investigations for linkage. A recent review is that of Robinson (1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • AWA, A:, SASAKI, M. and TAKAYAMA, S. (1959). An in vitro study of the somatic chromosomes in several mammals. Jap. J. Zool., 12, 257–265.

    Google Scholar 

  • BAUER, J. A. (1960). Genetics of skin transplantation and an estimate of the number of histocompatibility genes in inbred guinea-pigs. Annals N.Y. Acad. Sci., 87, 78–92.

    Article  Google Scholar 

  • CASTLE, W. E. (1905). Heredity of coat characters in guinea-pigs and rabbits. Car. Inst. Wash. Pub., 23, 78 pp.

    Google Scholar 

  • CASTLE, W. E. (1913). Reversion in guinea-pigs and its explanation. Car. Inst. Wash. Pub., 179, 1–10.

    Google Scholar 

  • CASTLE, W. E. (1916). An expedition to the home of the guinea-pig and some breeding experiments with material there obtained. Car. Inst. Wash. Pub., 241, 1–55.

    Google Scholar 

  • COHEN, M. M. and PINSKY, L. (1966). Autosomal polymorphism via a translocation in the guinea-pig, Cavia porcellus. Cytogenics, 5, 120–132.

    CAS  Google Scholar 

  • DOBRIJANOV, D. S. and GOLJDMAN, I. L. (1967a). [Chromosomes of the guinea-pig.] Byull. Exsp. Biol. Med. 63 (4), 100–104.

    Google Scholar 

  • DOBRIJANOV, D. S. and GOLJDMAN, I. L. (1967b). [The normal karyotype of the guinea-pig.] Tsitol. Genet. 1 (5), 78–82.

    Google Scholar 

  • ELLMAN, L., GREEN, I., MARTIN, W. J. and BENACERRAF, B. (1970). Linkage between the poly-l-lysine gene and the locus controlling the major histocompatibility antigens in strain 2 guinea-pigs. Proc. Nat. Acad. Sci. U.S.A., 66, 322–328.

    Article  CAS  Google Scholar 

  • GREEN, I., PAUL, W. E. and BENACERRAF, B. (1969). Genetic control of immunological responsiveness in guinea-pigs to 2–4-dinitrophenyl conjugates of poly-L-arginine, protamine and poly-L-ornithine. Proc. Nat. Acad. Sci. U.S.A., 64, 1095–1102.

    Article  CAS  Google Scholar 

  • GREGORY, P. W. (1928). Some new genetic types of eyes in the guinea-pig. J. Exp. Zool., 52, 159–181.

    Article  Google Scholar 

  • HERBERTSON, B. M., SKINNER, M. E. and TATCHELL, J. A. H. (1959). Sticky: a new mutant in the guinea pig. J. Genet., 56, 315–324.

    Article  CAS  Google Scholar 

  • HSU, T. C. and POMERAT, C. M. (1953). Mammalian chromosomes in vitro. II. A method for spreading the chromosomes of cells in tissue culture. J. Hered., 44, 23–29.

    Google Scholar 

  • IBSEN, H. L. (1922). A cross in guinea-pigs best explained by assuming 75 per cent crossing over. Anat. Rec., 23, 96.

    Google Scholar 

  • IBSEN, H. L. (1923). Evidence of the independent inheritance of six pairs of allelomorphs in guinea-pigs. Anat. Rec., 26, 392–393.

    Google Scholar 

  • IBSEN, H. L. (1932). Modifying factors in guinea-pigs. Proc. 6th Inter. Congr. Genet., 2, 97–101.

    Google Scholar 

  • JAGIELLO, G. M. (1969). Some cytologic aspects of meiosis in female guinea-pig. Chromosoma, 27, 95–101.

    Article  PubMed  CAS  Google Scholar 

  • MAKINO, S. (1947). Notes on the chromosomes of four species of small mammals. J. Fac. Sci., Hokkaido Univ., IV, 9, 345–357.

    Google Scholar 

  • OHNO, S., WEILER, C. and STENIUS, C. (1961). A dormant nucleolus organizer in the guinea pig, Cavia cobaya. Exp. Cell Res., 25, 498–503.

    Article  CAS  Google Scholar 

  • PRUNERIAS, M., MATHIVON, M.F., LEUNG, T. K. and GAZZOLO, L. (1965). Culture euploidie de cellules epidermiques adultes en couche manocellulaire. Ann. Inst. Pasteur, 108, 149–165.

    Google Scholar 

  • ROBINSON, R. (1970). Genetic linkage in the guinea-pig. Ann. Genet. Select. Anim., 2, 241–248.

    CAS  Google Scholar 

  • SACHS, L. (1952). Polyploid evolution and mammalian chromosomes. Heredity, 6, 358–364.

    Google Scholar 

  • SACHS, L. (1953). Simple methods for mammalian chromosomes. Stain Tech., 28, 169–172.

    CAS  Google Scholar 

  • SHARMA, G. P., PARSHAD, R. and GHUMAN, S. K. (1963). On the meiotic and somatic chromosomes of the guinea-pig. Res. Bull. Panjab Univ. Sci., 14, 167–169.

    Google Scholar 

  • SOLLAS, I. B. J. (1909). Inheritance of color and of supernumary mammae in guinea-pigs, with a note on the occurrence of a dwarf form. Rep. Evol. Com. Roy. Soc., 5, 51–79.

    Google Scholar 

  • TUSCANY, R. (1963). [Contribution to the characteristics of the chromosome set in somatic cells of the guinea-pig.] Czech. Morph. 2, 124–130.

    Google Scholar 

  • WATSON, E. D., BLUMENTHAL, H. T. and HUTTON, W. E. (1966). A method for the culture of leucocytes of the guinea-pig with karyotypic analysis. Cytogenetics, 5, 179–185.

    Article  PubMed  CAS  Google Scholar 

  • WRIGHT, S. (1916). An intensive study of the inheritance of color and of other coat characters in guinea-pigs. Car. Inst. Wash. Pub., 241, 57–160.

    Google Scholar 

  • WRIGHT, S. (1927). The effects in combination of the major colour factors of the guinea-pig. Genetics, 12, 530–569.

    Google Scholar 

  • WRIGHT, S. (1928). An eight factor cross in the guinea-pig. Genetics, 13, 508–531.

    PubMed  CAS  Google Scholar 

  • WRIGHT, S. (1934). The results of crosses between inbred strains of guinea-pigs differing in number of digits. Genetics, 19, 537–551.

    PubMed  CAS  Google Scholar 

  • WRIGHT, S. (1941). Tests for linkage in the guinea-pig. Genetics, 26, 650–669.

    PubMed  CAS  Google Scholar 

  • WRIGHT, S. (1949). On the genetics of hair direction in the guinea-pig. II. Evidence for a new dominant gene, star, and tests for linkage with eleven other loci. J. Exp. Zool., 122, 325–340.

    Article  Google Scholar 

  • WRIGHT, S. (1959). On the genetics of silvering in the guinea-pig, with special reference to interaction and linkage. Genetics, 44, 387–405.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robinson, R. (1972). Guinea-Pig. In: Gene Mapping in Laboratory Mammals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7323-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7323-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7302-3

  • Online ISBN: 978-1-4899-7323-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics