Skip to main content

Abstract

The biochemistry of the spinal cord (SC) has generally received less attention than that of other areas of the CNS, perhaps because of the relative inaccessibility of this tissue or because it is considered a less important region of the CNS. No recent review on the biochemistry of SC has appeared, to the knowledge of the author. This chapter summarizes the available data on the structural biochemistry of this organ. Only the data referring to normal tissue are considered; some data relative to the biochemical development of the SC also are included. Results obtained with histochemical techniques are mentioned briefly, only to give some insight, when possible, on the cellular localization and distribution of compounds that are generally measured in large samples of tissue. Restriction of space does not allow more than limited comparisons between the biochemical composition of SC and that of other regions of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Seige and V. Thierbach, Zur Biomorphose und Biochemie des menschlichen Rukenmarks. III. Asche- und Mineralgehaltinder Trockensubstanz-Stickstoff, Phosphor und Schwefel im lipoid und wasswefreien Rukstand, Z. Alternsforsch. 15: 46–61 (1961).

    PubMed  CAS  Google Scholar 

  2. A. Löwenthal, Déterminations de la teneur du système nerveux central en matière sèche, potassium et sodium, in Chemical Pathology of the Nervous System, Proc. 3rd Intern. Neurochem. Symp., Strasbourg, 1958, pp. 299–306, Pergamon Press, Oxford (1961).

    Google Scholar 

  3. A. Weil, Vergleichende Studien über den Gehalt verschiedenartiger Nervensubstanz an Aschenbestandteilen, Hoppe-Seyler’s Z. Physiol. Chem. 89: 349–359 (1914).

    Google Scholar 

  4. F. Davies, R. E. Davies, E. T. B. Francis, and R. Whittam, The sodium and potassium content of cardiac and other tissues of the ox, J. Physiol. (London) 118: 276–281 (1952).

    CAS  Google Scholar 

  5. N. Tupikova and R. W. Gerard, Salt content of neural structures, Am. J. Physiol. 119: 414–415 (1937).

    Google Scholar 

  6. J. F. Manery and A. B. Hastings, The distribution of electrolytes in mammalian tissues, J. Biol. Chem. 127: 657–676 (1939).

    CAS  Google Scholar 

  7. M. Wender and M. Hierowski, The concentration of electrolytes in the developing nervous system with special reference to the period of myelination, J. Neurochem. 5: 105–108 (1960).

    PubMed  CAS  Google Scholar 

  8. G. Branté, Studies on lipids in the nervous system. With special reference to quantitative chemical determination and topical distribution, Acta Physiol. Scand. 18 Suppl. 63 (1949).

    Google Scholar 

  9. J. Kreiner, The quantitative myelination of brains and spinal cords on dogs of various sizes, Acta Anat. 33: 50–64 (1958).

    PubMed  CAS  Google Scholar 

  10. M. Wollemann, A photometrical method for testing the presence of iron in the central nervous system, Acta Morphol. Acad. Sci. Hung. 1: 127–132 (1951).

    Google Scholar 

  11. P. J. Warren, C. J. Earl, and R. H. S. Thompson, The distribution of copper in human brain, Brain 83: 709–717 (1960).

    PubMed  CAS  Google Scholar 

  12. A. Schittenhelm and B. Eisler, Über die Verteilung des Jodes im Zentralnervensystem bei Mensch und Tier, Z. Ges. Exptl. Med. 86: 290–293 (1933).

    CAS  Google Scholar 

  13. K. H. Gabbay, L. O. Merola, and R. A. Field, Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes, Science 151: 209–210 (1966).

    PubMed  CAS  Google Scholar 

  14. L. G. Abood, R. W. Gerard, J. Banks, and R. D. Tschirgi, Substrate and enzyme distribution in cells and cell fractions of the nervous system, Am. J. Physiol. 168: 728–738 (1952).

    PubMed  CAS  Google Scholar 

  15. A. Chesler and H. E. Himwich, The glycogen content of various parts of the central nervous system of dogs and cats at different ages, Arch. Biochem. 2: 175–181 (1943).

    CAS  Google Scholar 

  16. A. Chesler and H. E. Himwich, Effect of insulin hypoglycemia on glycogen content of parts of the central nervous system of the dog, Arch. Neurol. Psychiat. 52: 114–116 (1944).

    CAS  Google Scholar 

  17. T. Terni, Ricerche sulla cosidetta sostanza gelatinosa (corpo glicogenico) del midollo lombo-sacrale degli uccelli, Arch. Ital. Anat. Embriol. 21: 55–86 (1924).

    Google Scholar 

  18. W. L. Doyle and R. L. Watterson, The accumulation of glycogen in the “glycogen body” of the nerve cord of the developing chick, J. Morphol. 85: 391–403 (1949).

    PubMed  CAS  Google Scholar 

  19. A. M. Lervold and J. Szepsenwol, Glycogenolysis in aliquots of glycogen bodies of the chick, Nature 200: 81 (1963).

    PubMed  CAS  Google Scholar 

  20. O. J. Rafaelsen, Action of insulin on carbohydrate uptake of isolated rat spinal cord, J. Neurochem. 7: 33–44 (1961).

    PubMed  CAS  Google Scholar 

  21. M. E.’ Smith, Glucose metabolism of central nervous tissues in rats with experimental allergic encephalomyelitis, Nature 209: 1031–1032 (1966).

    PubMed  CAS  Google Scholar 

  22. J. L. R. Candela and D. Martin-Hernandez, Action of insulin in vitro on the glucose uptake of the spinal cord of the cat, Experientia 15: 439–440 (1959).

    Google Scholar 

  23. M. V. Buell, O. H. Lowry, N. H. Roberts, M. L. W. Chang, and J. I. Kapphahn, The quantitative histochemistry of the brain. V. Enzymes of glucose metabolism, J. Biol. Chem. 232: 979–993 (1958).

    PubMed  CAS  Google Scholar 

  24. D. B. McDougal, D. W. Schulz, J. V. Passonneau, J. R. Clark, M. A. Reynolds, and O. H. Lowry, Quantitative studies of white matter. I. Enzymes involved in glucose-6phosphate metabolism, J. Gen. Physiol. 44: 487–498 (1961).

    PubMed  CAS  PubMed Central  Google Scholar 

  25. B. M. Breckenridge and E. J. Crawford, The quantitative histochemistry of the brain. Enzymes of glycogen metabolism, J. Neurochem. 7: 234–240 (1961).

    CAS  Google Scholar 

  26. D. B. McDougal, R. T. Schimke, E. M. Jones, and E. Touchill, Quantitative studies of 4 white matter. II. Enzymes involved in triose phosphate metabolism, J. Gen. Physiol. 47: 419–433 (1964).

    PubMed  CAS  PubMed Central  Google Scholar 

  27. N. Robinson and B. M. Phillips, Glycolytic enzymes in human brain, Biochem. J. 92: 254–259 (1964).

    PubMed  CAS  PubMed Central  Google Scholar 

  28. O. H. Lowry, Enzyme concentrations in individual nerve cell bodies, in Metabolism of 5 the Nervous System (D. Richter, ed.), pp. 323–328, Pergamon Press, Oxford (1957).

    Google Scholar 

  29. P. M. Dreyfus, The regional distribution of transketolase in the normal and the thiamine deficient nervous system, J. Neuropathol. Exptl. Neurol. 24: 119–129 (1965). 5

    Google Scholar 

  30. P. M. Dreyfus and G. Hauser, The effect of thiamine deficiency on the pyruvate de-carboxylase system of the central nervous system, Biochim. Biophys. Acta 104: 78–84 (1965). 5

    Google Scholar 

  31. A. M. Burt, Glucose metabolism and chick neurogenesis. I. 6-phosphate dehydrogenase activity in the embryonic brachial cord, Develop. Biol. 12: 213–232 (1965).

    PubMed  CAS  Google Scholar 

  32. V. Bonavita and R. Guarnieri, Lactate-dehydrogenase isoenzymes in nervous tissue. III. Regional distribution in ox brain, J. Neurochem. 10: 755–764 (1963). 5

    Google Scholar 

  33. A. Löwenthal, D. Karcher, and M. Van Sande, Electrophoretic patterns of lactate dehydrogenase isoenzymes in nervous tissues, J. Neurochem. 11: 247–250 (1954). 5

    Google Scholar 

  34. D. B. McDougal, Quantitative histochemistry of selected central tracts, Neurology 8: 58–59 (1958).

    PubMed  Google Scholar 

  35. R. L. Friede, L. M. Fleming, and M. Knoller, A comparative mapping of enzymes involved in hexosemonophosphate shunt and citric acid cycle in the brain, J. Neurochem. 10: 263–277 (1963).

    PubMed  CAS  Google Scholar 

  36. S. L. Manocha and G. H. Boume, Histochemical mapping of succinic dehydrogenase and cytochrome oxidase in the spinal cord,,medulla oblongata and cerebellum of squirrel monkey (Saimiri sciureus), Exptl. Brain Res. 2: 216–229 (1966).

    CAS  Google Scholar 

  37. K. Nandy and G. H. Boume, A histochemical study of the localization of succinic dehydrogenase, cytochrome oxidase and diphosphopyridine nucleotide-diaphorase in the synaptic regions of the spinal cord in the rat, J. Histochem. Cytochem. 12: 188–193 (1964).

    PubMed  CAS  Google Scholar 

  38. K. Nandy and G. H. Bourne, A histochemical study of the localization of the oxidative enzymes in the neurones of the spinal cord in rats, J. Anat. (London) 98: 647–653 (1964).

    CAS  Google Scholar 

  39. A. J. Hudson, J. H. Quastel, and P. G. Scholefield, The effect of heated snake venom on the phosphate metabolism of the rat spinal cord, J. Neurochem. 5: 177–184 (1960).

    PubMed  CAS  Google Scholar 

  40. A. J. Hudson and M. M. Kini, The preparation and some metabolic properties of rat spinal cord slices, Can. J. Biochem. 38: 965–968 (1960).

    PubMed  CAS  Google Scholar 

  41. H. E. Himwich and J. F. Fazekas, Comparative studies of the metabolism of the brain of infant and adult dog, Am. J. Physiol. 132: 454–459 (1941).

    CAS  Google Scholar 

  42. L. Hertz and T. Clausen, Effects of potassium and sodium on respiration: Their specificity to slices from certain brain regions, Biochem. J. 89: 526–533 (1963).

    PubMed  CAS  PubMed Central  Google Scholar 

  43. J. D. McColl and R. J. Rossiter, A comparative study of the lipids of the vertebrate central nervous system, II. Spinal cord, J. Exptl. Biol. 29: 203–210 (1952).

    Google Scholar 

  44. K. Seige, Zur Biomorphose und Biochemie des menschlichen Rükenmarks. II. Untersuchungen der Alternswandlungen des Vorkommens der Gesamtlipoide und Untersuchungen verschiedener Fettfraktionen, Z. Alternsforsch. 14: 126–147 (1960).

    PubMed  CAS  Google Scholar 

  45. G. R. Webster, Studies on the plasmalogens of nervous tissue, Biochim. Biophys. -Acta 44: 109–116 (1960).

    PubMed  CAS  Google Scholar 

  46. L. Amaducci, The distribution of proteolipids in the human nervous system, J. Neurochem. 9: 153–160 (1962).

    PubMed  CAS  Google Scholar 

  47. L. Amaducci, A. Pazzagli, and G. Pessina, The relation of proteolipids and phosphatidopeptides to tissue elements in the bovine nervous system, J. Neurochem. 9: 509–518 (1962).

    PubMed  CAS  Google Scholar 

  48. C. D. Joel, H. W. Moser, G. Majno, and M. L. Karnovsky, Effect of bis-(monoisopropylamino)-fluoro-phosphine oxide (Mipafox) and of starvation on the lipids in the nervous system of the hen, J. Neurochem. 14: 479–488 (1967).

    PubMed  CAS  Google Scholar 

  49. C. W. M. Adams and A. N. Davison, The occurrence of esterified cholesterol in the developing nervous system, J. Neurochem. 4: 282–289 (1959).

    PubMed  CAS  Google Scholar 

  50. W. C. McMurray, J. D. McColl, and R. J. Rossiter, A comparative study of the lipids of the invertebrate and vertebrate nervous system, in Comparative Neurochemistry (D. Richter, ed.), pp. 101–107, Pergamon Press, Oxford (1964).

    Google Scholar 

  51. C. H. Williams, H. J. Johnson, and J. L. Casterline, Cholesterol content of spinal cord and sciatic nerve of hens after organophosphate and carbonate administration, J. Neurochem. 13: 471–474 (1966).

    PubMed  CAS  Google Scholar 

  52. F. Chevallier and L. Petit, Incorporation of cholesterol into the central nervous system and its autoradiographic localization, Exptl. Neurol. 16: 250–254 (1966).

    CAS  Google Scholar 

  53. H. P. Schwarz, I. Kostyk, A. Marmolejo, and C. Sarappa, Long-chain bases of brain and spinal cord of rabbits, J. Neurochem. 14: 91–97 (1967).

    PubMed  CAS  Google Scholar 

  54. P. Flechsig, Die Leitungsbahnen im Gehirn und Rükenmark des Menschen, Engelemann, Leipzig (1876).

    Google Scholar 

  55. M. F. Lucas Keene and E. E. Hewer, Some observations on myelination in the human central nervous system, J. Anat. (London) 66: 1–13 (1931).

    CAS  Google Scholar 

  56. A. N. Davison and J. M. Oxberry, A comparison of the composition of white matter lipids in swayback and border disease of lambs, Res. Vet. Sci. 7: 67–71 (1966).

    PubMed  CAS  Google Scholar 

  57. H. I. El-Eishi, Biochemical and histochemical studies of myelination in the chick embryo spinal cord, J. Neurochem. 14: 405–412 (1967).

    PubMed  CAS  Google Scholar 

  58. R. H. Laatsch, Glycerol phosphate dehydrogenase activity of developing rat central nervous system, J. Neurochem. 9: 487–492 (1962).

    PubMed  CAS  Google Scholar 

  59. G. Porcellati, On the occurrence and distribution of the free phospholipid phosphoric esters and some amino compounds on the nervous tissues of some animal species, Riv. Biol. 56: 209–226 (1963).

    Google Scholar 

  60. G. Porcellati, A. Floridi, and A. Ciammarughi, The distribution and the biological significance of L-serine ethanolamine and L-threonine ethanolamine phosphates, Comp. Biochem. Physiol. 14: 413–418 (1965).

    PubMed  CAS  Google Scholar 

  61. G. Porcellati, Distribution and metabolism of threonine ethanolamine and serine ethanolamine phosphodiesters in nervous tissue, Biochim. Biophys. Acta 90: 183–186 (1964).

    PubMed  CAS  Google Scholar 

  62. P. W. Ramwell, J. E. Shaw, and R. Jessup, Spontaneous and evoked release of Prostaglandins from frog spinal cord, Am. J. Physiol. 211: 998–1004 (1966).

    PubMed  CAS  Google Scholar 

  63. G. Porcellati and R. H. S. Thompson, The effect of nerve section on the level of free amino acids of nerve tissue, J. Neurochem. 1: 340–347 (1957).

    PubMed  CAS  Google Scholar 

  64. L. T. Graham, Jr., R. P. Shank, R. Werman, and M. H. Aprison, Distribution of some synaptic transmitter suspects in cat spinal cord: Glutamic acid, aspartic acid, y-aminobutyric acid, glycine and glutamine, J. Neurochem. 14: 465–472 (1967).

    PubMed  CAS  Google Scholar 

  65. Y. Nagata, Y. Yokoi, and Y. Tsukada, Studies on free amino acid metabolism in excised cervical sympathetic ganglia from the rat, J. Neurochem. 13: 1421–1431 (1966).

    PubMed  CAS  Google Scholar 

  66. J. Kandera, G. Levi, and A. Lajtha, Control of cerebral metabolite levels. II. Amino acid uptake and levels in various areas of the rat brain, Arch. Biochem. Biophys. 126: 249–260 (1968).

    PubMed  CAS  Google Scholar 

  67. R. W. A. Baker and G. Porcellati, The separation of nitrogen-containing phosphate esters from brain and spinal cord by ion-exchange chromatography, Biochem. J. 73: 561–566 (1959).

    PubMed  CAS  PubMed Central  Google Scholar 

  68. H. H. Tallan, A survey of the amino acids and related compounds in the nervous tissue, in Amino Acid Pools (J. T. Holden, ed.), pp. 471–485, Elsevier, Amsterdam (1962).

    Google Scholar 

  69. C. G. Levi and A. Lajtha, Cerebral amino acid transport in vitro. II. Regional differences in amino acid uptake by slices from the central nervous system of the rat, J. Neurochem. 12: 639–648 (1965).

    PubMed  CAS  Google Scholar 

  70. H. H. Tallan, Studies on the distribution of N-acetyl-L-aspartic acid in brain, J. Biol. Chem. 224: 41–45 (1957).

    PubMed  CAS  Google Scholar 

  71. A. Curatolo, P. D’Arcangelo, A. Lino, and A. Brancati, Distribution of N-acetyl-aspartic and N-acetyl-aspartyl-glutamic acids in nervous tissue, J. Neurochem. 12: 339–342 (1965).

    PubMed  CAS  Google Scholar 

  72. I. P. Lowe, E. Robins, and G. S. Eyerman, The fluorimetric measurement of glutamic decarboxylase and its distribution in brain, J. Neurochem. 3: 8–18 (1958).

    PubMed  CAS  Google Scholar 

  73. R. W. Albers and R. O. Brady, The distribution of glutamic decarboxylase in the nervous system of the rhesus monkey, J. Biol. Chem. 234: 926–928 (1959).

    PubMed  CAS  Google Scholar 

  74. R. A. Salvador and R. W. Albers, The distribution of glutamic-y-aminobutyric transaminase in the nervous system of the rhesus monkey, J. Biol. Chem. 234: 922–925 (1959).

    PubMed  CAS  Google Scholar 

  75. F. N. Pitts, Jr., and C. Quick, Brain succinate semialdehyde dehydrogenase. I. Assay and distribution, J. Neurochem. 12: 893–900 (1965).

    PubMed  CAS  Google Scholar 

  76. D. B. Goldstein, D-Amino acid oxidase in brain: Distribution in several species and inhibition by pentobarbitone, J. Neurochem. 13: 1011–1016 (1966).

    PubMed  CAS  Google Scholar 

  77. A. H. Neims, W. D. Zieverink, and J. D. Smilack, Distribution of D-amino acid oxidase in bovine and human nervous tissues, J. Neurochem. 13: 163–168 (1966).

    PubMed  CAS  Google Scholar 

  78. B. Curti and G. Porcellati, Some properties of a phosphopeptide isolated from nervous tissues. VI. The relationship with some phosphorus-containing compounds of biological interest, Communication No. 231/bis, Proc. 8th Natl. Congr. Ital. Biochem. Soc., Padoa,October 3–6 (1962). 1(

    Google Scholar 

  79. G. Porcellati and I. Montanini, Su di alcune caratteristiche di un fosfopeptide isolato dal tessuto nervoso. VII. Distribuzione ed attivita’ metabolica in alcuni tessuti di polio, Boll. Soc. Ital. Biol. Sper. 39: 115–118 (1963).

    CAS  Google Scholar 

  80. F. Lembeck and G. Zetler, Substance P: A polypeptide of possible physiological significance, especially within the nervous system, Intern. Rev. Neurobiol. 4: 159–213 (1962).

    Google Scholar 

  81. A. H. Amin, T. B. B. Crawford, and J. H. Gaddum, The distribution of substance P 1(and 5-hydroxytryptamine in the central nervous system of the dog, J. Physiol. (London) 126: 596–618 (1954).

    CAS  Google Scholar 

  82. C. E. Lumsden, D. M. Robertson, and R. Blight, Chemical studies on experimental 11 allergic encephalomyelitis. Peptide as the common denominator in all encephalitogenic “antigens,” J. Neurochem. 13: 127–162 (1966). 11

    Google Scholar 

  83. P. R. Carnegie and C. E. Lumsden, Encephalitogenic peptides of spinal cord, Nature 209: 1354–1355 (1966). ll

    Google Scholar 

  84. A. Nakao, W. J. Davis, and E. Roboz-Einstein, Basic proteins from the acidic extract of bovine spinal cord. II. Encephalitogenic, immunologic and structural interrelationships, 11 Biochim. Biophys. Acta 130: 171–179 (1966).

    Google Scholar 

  85. M. W. Kies, E. B. Thompson, and E. C. Alvord, Jr., The relationship of myelin proteins 11 to experimental allergic encephalomyelitis, Ann. N.Y. Acad. Sci. 122: 148–160 (1965).

    PubMed  CAS  Google Scholar 

  86. G. J. Maletta, A. Vernadakis, and P. S. Timiras, Pre-and postnatal development of the II spinal cord: Increased acetylcholinesterase activity, Proc. Soc. Exptl. Biol. Med. 121: 12101211 (1966).

    Google Scholar 

  87. B. Kelley, Age and nitrogen content of rabbit brain parts, Am. J. Physiol. 185: 299–301 (1956). 1

    Google Scholar 

  88. M. Wender and Z. Waligora, The content of amino acids in the proteins of the developing nervous system of the guinea pig. III. Spinal cord, J. Neurochem. 11: 243–247 (1964).

    PubMed  CAS  Google Scholar 

  89. B. W. Moore, A soluble protein characteristic of the nervous system, Biochem. Biophys. Res. Commun. 19: 739–744 (1965).

    PubMed  CAS  Google Scholar 

  90. A. Lajtha, Protein metabolism of the nervous system, Intern. Rev. Neurobiol. 6: 1–98 (1964).

    CAS  Google Scholar 

  91. L. F. Pantchenko, Protein turnover at various levels of the central nervous system and in the liver in growing and full grown animals, J. Physiol. URSS 44: 243–248 (1958).

    Google Scholar 

  92. J. Fisher, J. Kolousek, and Z. Lodin, Incorporation of methionine (sulphur-35) into the central nervous system, Nature 178: 1122–1123 (1956).

    Google Scholar 

  93. J. Altman, Regional utilization of leucine-H3 by normal rat brain: Microdensitometric evaluation of autoradiograms, J. Histochem. Cytochem. 11: 741–750 (1963).

    CAS  Google Scholar 

  94. D. H. Ford and R. Rhines, Uptake of C14 into the brain and other tissues of normal and dysthyroidal male rats after injection of C14-L-glutamine, Acta Neurol. Scand. 43: 33–47 (1967).

    PubMed  CAS  Google Scholar 

  95. D. H. Ford, E. Pascoe, and R. Rhines, Effect of high pressure oxygen on the uptake of DL-lysine-H3 by brain and other tissues of the rat. Acta Neurol. Scand. 43: 129–148 (1967).

    PubMed  CAS  Google Scholar 

  96. A. Lajtha, Observations on protein catabolism in brain, in Regional Neurochemistry (S. S. Kety and J. Elkes, Eds.), pp. 25–36, Pergamon Press, Oxford (1961).

    Google Scholar 

  97. G. Porcellati, A. Millo, and I. Manocchio, Proteinase activity of nervous tissues in organophosphorus compound poisoning, J. Neurochem. 7: 317–320 (1961).

    PubMed  CAS  Google Scholar 

  98. A. J. Samuels, L. L. Boyarsky, R. W. Gerard, B. Libet, and M. Brust, Distribution, exchange and migration of phosphate compounds in the nervous system, Am. J. Physiol. 164: 1–15 (1951).

    PubMed  CAS  Google Scholar 

  99. H. H. Donaldson (ed.), The Rat. Data and Reference Tables, p. 321, Memoirs of the Wistar Institute of Anatomy and Biology, No. 6, Philadelphia (1924).

    Google Scholar 

  100. K. Seige and V. Thierbach, Zur Biomorphose und Biochemie des menschlichen Rükenmarks. IV. Untersuchungen über den Nukleinsäurengehalt in den verschiedenen Altersstufen, Z. Alternsforsch. 16: 211–218 (1961).

    Google Scholar 

  101. Lj. Mihailovié, D. B. Jankovie, M. Petkovié, and D. Mancie, Distribution of DNA and RNA in different regions of cat’s brain, Experientia 14: 9–10 (1958).

    Google Scholar 

  102. J. E. Edström, The content and concentration of ribonucleic acid in motor anterior horn cells from the rabbit, J. Neurochem: 1: 159–165 (1956).

    PubMed  Google Scholar 

  103. R. Landolt, H. H. Hess, and C. Thalheimer, Regional distribution of some chemical structural components of the human nervous system. I. DNA, RNA and ganglioside sialic acid, J. Neurochem. 13: 1441–1452 (1966).

    PubMed  CAS  Google Scholar 

  104. E. K. Adrian, Jr., and B. E. Walker, Incorporation of thymidine-H3 by cells in normal and injured mouse spinal cord, J. Neuropath. Exptl. Neurol. 21: 597–609 (1962).

    Google Scholar 

  105. F. C. Macintosh, The distribution of acetylcholine in the peripheral and the central nervous system, J. Physiol. (London) 99: 436–442 (1941).

    CAS  Google Scholar 

  106. G. C. Pepeu, Le amine biogene del sistema nervoso centrale, La Settimana Medica 54: 57–74 (1966).

    Google Scholar 

  107. G. S. Barsoum, The acetylcholine equivalent of nervous tissues, J. Physiol. (London) 84: 259–262 (1935).

    CAS  Google Scholar 

  108. C. O. Hebb and A. Silver, Choline acetylase in the central nervous system of man and some other mammals, J. Physiol. (London) 134: 718–728 (1956).

    CAS  Google Scholar 

  109. R. E. McCaman and J. M. Hunt, Microdetermination of choline acetylase in nervous tissue, J. Neurochem. 12: 253–259 (1965).

    PubMed  CAS  Google Scholar 

  110. W. Feldberg and M. Vogt, Acetylcholine synthesis in different regions of the central nervous system, J. Physiol. (London) 107: 372–381 (1948).

    CAS  Google Scholar 

  111. A. S. V. Burgen and L. M. Chipman, Cholinesterase and succinic dehydrogenase in the central nervous system of the dog, J. Physiol. (London) 114: 296–305 (1951).

    CAS  Google Scholar 

  112. E. Giacobini and B. Holmsted, Cholinesterase content of certain regions of the spinal cord as judged by histochemical and Cartesian diver technique, Acta Physiol. Scand. 42: 12–27 (1958).

    PubMed  CAS  Google Scholar 

  113. E. Giacobini, Intracellular distribution of cholinesterase in the anterior horn cells of rat, Arch. Ital. Biol. 99: 163–177 (1961).

    CAS  Google Scholar 

  114. M. D. Nachmansohn, Choline esterase in brain and spinal cord of sheep embryos, J. Neurophysiol. 3: 396–402 (1940).

    CAS  Google Scholar 

  115. B. S. Wenger, Cholinesterase activity in different spinal cord levels of the chick embryo, Federation Proc. 10: 268–269 (1961).

    Google Scholar 

  116. L. W. Chacko and J. A. Cerf, Histochemical localization of cholinesterase in the amphibian spinal cord and alterations following ventral root section, J. Anat. (London) 94: 74–81 (1960).

    CAS  Google Scholar 

  117. K. Nandy and G. H. Boume, The effects of D-lysergic acid diethylamide tartrate (LSD-25) on the cholinesterases and monoamine oxidase in the spinal cord: a possible factor in the mechanism of hallucination, J. Neurol. Neurosurg. Psychiat. 27: 259–267 (1964).

    PubMed  CAS  PubMed Central  Google Scholar 

  118. G. B. Koelle, The histochemical localization of cholinesterases in the central nervous system of the rat, J. Comp. Neurol. 100: 211–228 (1954).

    PubMed  CAS  Google Scholar 

  119. Söderholm, Histochemical localization of esterases, phosphatases and tetrazolium reductases in the motor neurons of the spinal cord of the rat and the effect of nerve division, Acta Physiol. Scand. 65: Suppl. 256, 3–60 (1965).

    Google Scholar 

  120. M. W. Brightman and R. W. Albers, Species differences in the distribution of extra-neuronal cholinesterases within the vertebrate central nervous system. J. Neurochem. 4: 244–250 (1959).

    PubMed  CAS  Google Scholar 

  121. E. G. McGreer and P. L. McGeer, Catecholamine content of spinal cord, Can. J. Biochem. 40: 1141–1152(1962).

    Google Scholar 

  122. A. H. Anton and D. F. Sayre, The distribution of dopamine and dopa in various animals and a method for their determination in diverse biological material. J. Pharmacol. Exptl. Therap. 145: 326 (1964).

    CAS  Google Scholar 

  123. G. R. Pscheidt and B. Haber, Regional distribution of dihydroxyphenylalanine and 5-hydroxytryptophan decarboxylase and of biogenic amines in the chicken central nervous system, J. Neurochem. 12: 613–618 (1965).

    PubMed  CAS  Google Scholar 

  124. N. E. Andén, T. Magnusson, B. E. Roos, and B. W. Werdinius, 5-Hydroxyindolacetic acid of rabbit spinal cord normally and after transection, Acta Physiol. Scand. 64: 193–196 (1965).

    PubMed  Google Scholar 

  125. D. Davila, M. Rabadjija, D. J. Palaié, and Z. Supek, Content and distribution of 5hydroxytryptamine in the central nervous system of the frog, J. Neurochem. 12: 59–60 (1965).

    PubMed  CAS  Google Scholar 

  126. T. Magnusson and E. Rosengren, Catecholamines of the spinal cord normally and after transection, Experientia 19: 229–230 (1963).

    CAS  Google Scholar 

  127. N. E. Andén, A. Carlsson, N. A. Hillarp, and T. Magnusson, 5-hydroxytryptamine release by nerve stimulation of the spinal cord, Life Sci. 3: 473–478 (1964).

    PubMed  Google Scholar 

  128. N. E. Andén, Distribution of monoamines and dihydroxyphenylalanine decarboxylase activity in the spinal cord, Acta Physiol. Scand. 64: 197–203 (1965).

    PubMed  Google Scholar 

  129. E. G. Anderson and L. O. Holgerson, The distribution of 5-hydroxytryptamine and norepinephrine in cat spinal cord, J. Neurochem. 13: 479–485 (1966).

    PubMed  CAS  Google Scholar 

  130. M. Vogt, The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs, J. Physiol. (London) 123: 451–481 (1954).

    CAS  Google Scholar 

  131. S. Spector, K. Melmon, W. Lovenberg, and A. Sjoerdsma, The presence and distribution of tyramine in mammalian tissues, J. Pharmacol Exptl. Therap. 140: 229–235 (1963).

    CAS  Google Scholar 

  132. N. E. Andén, A. Carlsson, N. A. Hillarp, and T. Magnusson, Noradrenaline release by nerve stimulation of the spinal cord, Life Sci. 4: 129–132 (1965).

    PubMed  Google Scholar 

  133. A. Dahlstrom and K. Fuxe, Evidence for the existence of monoamine-containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine level of bulbospinal neuron systems, Acta Physiol. Scand. 64: Suppl. 247, 1–36 (1965).

    Google Scholar 

  134. A. Carlsson, T. Magnusson, and E. Rosengren, 5-Hydroxytryptamine of the spinal cord normally and after transection, Experientia 19: 359 (1963).

    PubMed  CAS  Google Scholar 

  135. N. E. Andén, T. Magnusson, and E. Rosengren, On the presence of dihydroxyphenylalanine decarboxylase in nerves, Experientia 20: 328–329 (1964).

    PubMed  Google Scholar 

  136. A. Carlsson, B. Falck, K. Fuxe, and N. A. Hillarp, Cellular localization of monoamines in the spinal cord, Acta Physiol. Scand. 60: 112–119 (1964).

    PubMed  CAS  Google Scholar 

  137. H. Shimizu, Y. Kakimoto, and I. Samu, The determination and distribution of polyamines in mammalian nervous system, J. Pharmacol. Exptl. Therap. 143: 199–204 (1964).

    CAS  Google Scholar 

  138. C. Fieschi and S. Soriani, Enzymic activities in the spinal cord after sciatic section. Alkaline and acid phosphatases, 5-nucleotidase and ATPase, J. Neurochem. 4: 71–77 (1959).

    PubMed  CAS  Google Scholar 

  139. K. Nandy and G. H. Bourne, Alkaline phosphatases in brain and spinal cord, Nature 200: 1216–1217 (1963).

    PubMed  CAS  Google Scholar 

  140. R. L. Friede, Alkaline and acid phosphatases and non specific esterases, in Topographic Brain Chemistry, pp. 178–225, Academic Press, New York (1966).

    Google Scholar 

  141. A. D. Chiquoine, Distribution of alkaline phosphomonoesterases in the central nervous system of the mouse embryo, J. Comp. Neurol. 100: 415–439 (1954).

    PubMed  CAS  Google Scholar 

  142. K. Nandy and G. H. Boume, Adenosine triphosphatase and 5-nucleotidase in spinal cord, Arch. Neurol. 11: 547–554 (1964).

    PubMed  CAS  Google Scholar 

  143. R. Fried, Sodium-potassium activated ATPase from spinal cord of normal and injured rats, J. Neurochem. 12: 815–832 (1965).

    PubMed  CAS  Google Scholar 

  144. E. Poulsen and W. N. Aldridge, Studies on esterases in the chicken central nervous system, Biochem. J. 90: 182–189 (1964).

    PubMed  CAS  PubMed Central  Google Scholar 

  145. R. D. Tschirgi, The blood-brain barrier, in Biology of Neuroglia (W. F. Windle, ed.), pp. 130–138, C. C. Thomas, Springfield, Illinois (1958).

    Google Scholar 

  146. W. Ashby, On the quantitative incidence of carbonic anhydrase in the central nervous system, J. Biol. Chem. 155: 671–679 (1944).

    CAS  Google Scholar 

  147. W. Ashby and E. M. Sch uster, Carbonic anhydrase in the brain of newborn in relation to functional maturity, J. Biol. Chem. 184: 109–116 (1950).

    PubMed  CAS  Google Scholar 

  148. G. de Murait, Aneurine libre et totale dans les nerfs périphériques et le système nerveux central de quelques mammifères, Intern. Z. Vitaminforsch. 19: 74–101 (1947).

    Google Scholar 

  149. P. M. Dreyfus, The quantitative histochemical distribution of thiamine in normal rat brain, J. Neurochem. 4: 183–190 (1959).

    Google Scholar 

  150. F. Plaut and M. Bülow, Über Unterschiede im C-Vitamingehalt verschiedener Teile des Nervensystems, Z. Ges. Neurol. Psychiat. 153: 182–192 (1935).

    CAS  Google Scholar 

  151. H. Leeman and E. Pichler, Über den Lactoflavingehalt des Zentralnervensystems und Seine Bedentung, Arch. Phychiat. Nervenkrankh. 114: 265–289 (1942).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levi, G. (1969). Spinal Cord. In: Lajtha, A. (eds) Handbook of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7321-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7321-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7301-6

  • Online ISBN: 978-1-4899-7321-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics