Skip to main content

Choroid Plexus

  • Chapter
Handbook of Neurochemistry

Abstract

The choroid plexuses are specialized highly vascular anatomical structures which protrude into the cerebral ventricles. A choroid plexus is found in each lateral ventricle, as well as in the third ventricle and fourth ventricle. The surface of the choroid plexus consists of small villi each covered with a single layer of large cuboidal epithelial cells. Underneath the epithelial layer a central core is found consisting of loose connective tissues in which a central capillary is embedded (Fig. 1).

The author is indebted to the U. S. Public Health Service for grants that enabled him to conduct the original research, part of which is reported in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. C. Worthington, Jr., and R. S. Cathcart, III, Ependymalcilia: distribution and activity in the adult human brain, Science 139: 221–222 (1963).

    Article  PubMed  Google Scholar 

  2. D. C. Pease, Infolded basal plasma membranes found in epithelia noted for their water transport, J. Biophys. Biochem. Cytol. 2, Suppl. 4, 203–208 (1956).

    Article  Google Scholar 

  3. S. R. Heisey, D. H. Held, and J. R. Pappenheimer, Bulk flow and diffusion in the cerebrospinal fluid system of the goat, Am. J. Physiol. 203: 775–781 (1962).

    PubMed  CAS  Google Scholar 

  4. K. Welch, Secretion of cerebrospinal fluid by choroid plexus of the rabbit, Am. J. Physiol. 205: 617–624 (1963).

    PubMed  CAS  Google Scholar 

  5. S. S. Kety and C. F. Schmidt, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values, J. Clin. Invest. 27: 476–483 (1948).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. H. W. Smith, The Kidney: Structure and Function in Health and Disease, Oxford University Press, New York (1951).

    Google Scholar 

  7. E. A. Bering, Jr., Choroid plexus and arterial pulsation of cerebrospinal fluid. Demonstration of the choroid plexuses as a cerebrospinal fluid pump, Arch. Neurol. Psychiat. 73: 165–172 (1955).

    Article  Google Scholar 

  8. E. A. Bering, Jr., Circulation of the cerebrospinal fluid: demonstration of the choroid plexus as the generator of the force for flow of fluid and ventricular enlargement, J. Neurosurg. 19: 405–413 (1962).

    Article  PubMed  Google Scholar 

  9. C. B. Wilson and V. Bertan, Interruption of the anterior choroidal artery in experimental hydrocephalus, Arch. Neurol. 17: 614–619 (1967).

    Article  PubMed  CAS  Google Scholar 

  10. O. Jürvi, U. d. Einwirkung von Pilokarpin und Atropin auf das mikroskopische Bild des Adergeflechtes, Acta. Soc. Med. “Duodecim” Ser. A 23: 84–96 (1940).

    Google Scholar 

  11. H. A. Krebs and H. Rosenhagen, Ăśber den Stoffwechsel des plexus chorioideus, Z. Ges. Neurol. Psychiat. 134: 643 (1931).

    Article  Google Scholar 

  12. J. S. Friedenwald, H. Herrmann, and R. Buka, The distribution of certain oxidative enzymes in the choroid plexus, Bull. Johns Hopkins Hosp. 70: 1–18 (1942).

    CAS  Google Scholar 

  13. E. H. Leduc and G. B. Wislocki, The histochemical localization of acid and alkaline phosphates, non-specific esterase and succinic dehydrogenase in the structures comprising the hematoencephalic barrier of the rat, J. Comp. Neurol. 97: 241–279 (1952).

    Article  PubMed  CAS  Google Scholar 

  14. R. D. Stiehler and L. B. Flexner, A mechanism of secretion in the choroid plexus. The conversion of oxidation-reduction energy into work, J. Biol. Chem. 126: 603–617 (1938).

    CAS  Google Scholar 

  15. R. G. Fisher and J. H. Copenhaver, Jr., The metabolic activity of the choroid plexus, J. Neurosurg. 16: 167–176 (1959).

    Article  PubMed  CAS  Google Scholar 

  16. T. H. Maren, Carbonic anhydrase: Chemistry, physiology and inhibition, Physiol. Rev. 47: 595–781 (1967).

    PubMed  CAS  Google Scholar 

  17. T. Z. Vates, Jr., S. L. Bonting, and W. W. Oppelt, Na-K activated adenosine triphosphatase and formation of cerebrospinal fluid in the cat, Am. J. Physiol. 206: 1165–1172 (1964).

    PubMed  CAS  Google Scholar 

  18. J. W. Millen and D. H. M. Woollam, The Anatomy of the Cerebrospinal Fluid, Oxford University Press, London (1962).

    Google Scholar 

  19. H. Dayson, Physiology of the Cerebrospinal Fluid, Little, Brown, Boston (1967).

    Google Scholar 

  20. J. R. Pappenheimer, S. R. Heisey, E. F. Jordan, and J. DeC. Downer, Perfusion of the cerebral ventricular system in unanesthetized goats, Am. J. Physiol. 200: 1–10 (1961).

    PubMed  CAS  Google Scholar 

  21. T. Z. Csdky and B. M. Rigor, The choroid plexus as a glucose barrier, in Brain Barrier Systems, Progr. Brain Res. 29: 147–158 (1968).

    Article  Google Scholar 

  22. H. Cushing, Studies in Intracranial Physiology and Surgery, Oxford Medical Publications, London (1926).

    Google Scholar 

  23. H. De Rougemont, A. Ames, III, F. D. Nesbett, and H. F. Hoffmann, Fluid formed by choroid plexus, J. Neurophysiol. 23: 485–495 (1960).

    PubMed  Google Scholar 

  24. J. Faivre, Recherches sur la structure du coronarium et des plexus choroides chez l’homme et les animaux, Gazette Med. Paris 9: 555 (1854).

    Google Scholar 

  25. H. von Luschka, Die Adergeflechte des menschlichen Gehirnes, George Reimer, Berlin (1855).

    Google Scholar 

  26. W. E. Dandy, Experimental hydrocephalus, Ann. Surg. 70: 129–142 (1919).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. E. A. Bering, Jr., and O. Sato, Hydrocephalus: Changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles, J. Neurosurg. 20: 1050–1063 (1963).

    Article  PubMed  Google Scholar 

  28. E. A. Bering, Jr., Cerebrospinal fluid production and its relationship to cerebral metabolism and cerebral blood flow, Am. J. Physiol. 197: 825–828 (1959).

    PubMed  Google Scholar 

  29. M. Pollay and F. Curl, Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit, Am. J. Physiol. 213: 1031–1038 (1967).

    PubMed  CAS  Google Scholar 

  30. M. W. B. Bradbury and H. Dayson, The transport of urea, creatinine and certain monosaccharides between blood and fluid perfusing the cerebral ventricular system of rabbits, J. Physiol. 170: 195–211 (1964).

    PubMed  CAS  PubMed Central  Google Scholar 

  31. H. Dayson, C. R. Kleeman, and E. Levin, Quantitative studies of the passage of different substances out of the cerebrospinal fluid, J. Physiol. 161: 126–142 (1962).

    Google Scholar 

  32. L. Graziani, A. Escriva, and R. Katzman, Exchange of calcium between blood, brain, and cerebrospinal fluid, Am. J. Physiol. 208: 1058–1064 (1965).

    PubMed  CAS  Google Scholar 

  33. W. W. Oppelt, T. H. Maren, E. S. Owens, and D. P. Rall, Effects of acid-base alteration on cerebrospinal fluid production, Proc. Soc. Exptl. Biol. N.Y. 114: 86–89 (1963).

    Article  CAS  Google Scholar 

  34. A. Ames, III, M. Sallanous, and S. Endo, Na, K, Ca, Mg and Cl concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate, J. Neurophysiol. 27: 672–681 (1964).

    PubMed  Google Scholar 

  35. K. Sadler and K. Welch, Concentration of glucose in new choroidal cerebrospinal fluid of the rabbit, Nature 215: 884 (1967).

    Article  PubMed  CAS  Google Scholar 

  36. E. A. Bering, Jr., Studies on the role of the choroid plexus in tracer exchanges between blood and cerebrospinal fluid, J. Neurosurg. 12: 385–392 (1955).

    Article  PubMed  CAS  Google Scholar 

  37. W. H. Sweet, B. Selverstone, S. Solloway, and D. Stetten, Jr., Studies of formation, flow and absorption of cerebrospinal fluid. Studies with heavy water in the normal man, American College of Surgeons Surgical Forum, pp. 376–381, Saunders, Philadelphia (1950).

    Google Scholar 

  38. K. Welch, K. Sadler, and G. Gold, Volume flow across choroidal ependyma of the rabbit, Am. J. Physiol. 210: 232–236 (1966).

    PubMed  CAS  Google Scholar 

  39. J. M. Diamond, The mechanism of isotonic water transport, J. Gen. Physiol. 48: 15–42 (1964).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. J. M. Diamond and W. H. Bossert, Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia, J. Gen. Physiol. 50: 2061–2083 (1967).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. W. H. Sweet, G. L. Brownell, J. A. Scholl, D. R. Bowsher, P. Benda, and E. E. Stickley, The formation flow and absorption of cerebrospinal fluid; newer concepts based on studies with isotopes, Neurol. Psych. Childhood Res. Publ. Assoc. Nerv. Ment. Dis. 34: 101–159 (1954).

    Google Scholar 

  42. A. Ames, III, K. Higashi, and F. B. Nesbett, Relation of potassium concentration in choroid plexus fluid to that in plasma, J. Physiol. 181: 506–515 (1965).

    PubMed  CAS  PubMed Central  Google Scholar 

  43. H. Loeschke, Über Bestandspotentiale im Gebiete der Medulla oblongata, Pflügers Arch. Ges. Physiol. 262: 517–531 (1956).

    Article  Google Scholar 

  44. D. Held, V. Fend, and J. R. Pappenheimer, Electrical potential of cerebrospinal fluid, J. Neurophysiol. 27: 942–959 (1964).

    PubMed  CAS  Google Scholar 

  45. K. Welch and K. Sadler, Electrical potential of choroid plexus of the rabbit, J. Neurosurg. 22: 344–349 (1965).

    Article  PubMed  CAS  Google Scholar 

  46. J. Paupe, Comparison entre fractions calciques de liquides céphalo-rachidiens et de sérums normaux chez l’homme, Compt. Rend. Soc. Biol. 151: 318–320 (1957)

    CAS  Google Scholar 

  47. C. A. M. Hogben, P. Wistrand, and T. H. Maren, Role of active transport of chloride in formation of dogfish cerebrospinal fluid, Am. J. Physiol. 199: 124–126 (1960).

    PubMed  CAS  Google Scholar 

  48. L. Birzis, C. H. Carter, and T. H. Maren, Effect of acetazolamide on CSF pressure and electrolytes in hydrocephalus, Neurology 8: 522–528 (1958).

    Article  PubMed  CAS  Google Scholar 

  49. B. Becker, Carbonic anydrase and the formation of aqueous humour, Am. J. Ophthalmol. 47: 342 (1959).

    PubMed  CAS  Google Scholar 

  50. K. Welch and K. Sadler, Permeability of the choroid plexus of the rabbit to several solutes, Am. J. Physiol. 210: 652–660 (1966).

    PubMed  CAS  Google Scholar 

  51. J. R. Pappenheimer, S. R. Heisey, and E. F. Jordan, Active transport of Diodrast and phenolsulfonphthalein from cerebrospinal fluid to blood, Am. J. Physiol. 200: 1–10 (1961).

    PubMed  CAS  Google Scholar 

  52. A. Katchalsky and P. F. Curran, Nonequilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge (1965).

    Google Scholar 

  53. T. Z. Csâky and B. M. Rigor, A concentrative mechanism for sugars in the choroid plexus, Life Sci. 3: 931–936 (1964).

    Article  PubMed  Google Scholar 

  54. B. Becker, Cerebrospinal fluid iodide, Am. J. Physiol. 301: 1149–1151 (1961).

    Google Scholar 

  55. K. Welch, Concentration of thiocyanate by the choroid plexus of the rabbit, Am. J. Physiol. 205: 617–624 (1963).

    PubMed  CAS  Google Scholar 

  56. Y. Tochino and L. S. Schanker, Active transport of quaternary ammonium compounds by the choroid plexus in vitro, Am. J. Physiol. 208: 666–673 (1965).

    PubMed  CAS  Google Scholar 

  57. Y. Tochino and L. S. Schanker, Transport of serotinin and norepinephrine by the rabbit choroid plexus in vitro, Biochem. Pharmacol. 14: 1557–1566 (1965).

    Article  PubMed  CAS  Google Scholar 

  58. A. E. Takemori and M. W. Stenwick, Studies on the uptake of morphine by the choroid plexus in vitro, J. Pharmacol. Exptl. Therap. 154: 586–594 (1966).

    CAS  Google Scholar 

  59. C. C. Hug and M. M. Ziegler, Transport of narcotic analgesics by choroid plexus and renal tissue in vitro, Federation Proc. 25: 415 (1966).

    Google Scholar 

  60. C. C. Hug, Transport of narcotic analgesics by choroid plexus and kidney tissue in vitro, Biochem. Pharmacol. 16: 345 (1967).

    Article  PubMed  CAS  Google Scholar 

  61. D. P. Rall and W. Sheldon, Transport of organic acid dyes by the isolated choroid plexus of the spiny dogfish S. acanthias, Biochem. Pharmacol. 11: 169 (1961).

    Article  Google Scholar 

  62. R. A. Fishman, Active transport and the blood-brain barrier to penicillin and related organic acids, Trans. Am. Neurol. Assoc. 89: 51–55 (1964).

    PubMed  CAS  Google Scholar 

  63. L. S. Schanker, L. D. Prockop, J. Schou, and P. Sisodia, Rapid efflux of some quaternary ammonium compounds from cerebrospinal fluid, Life Sci. 10: 515–521 (1962).

    Article  Google Scholar 

  64. T. K. Adler, CNS localization, biological disposition, and analgetic action of morphine and codeine after intraventricular injection of mice. Federation Proc. 23: 283 (1964).

    Google Scholar 

  65. J. Glowinski, I. J. Kopin, and J. Axelrod, Metabolism of noradrenaline-3H in the rat brain, J. Neurochem. 12: 25–30 (1965).

    Article  PubMed  CAS  Google Scholar 

  66. V. M. Tennyson and G. D. Pappas, Electronmicroscope studies of the developing telencephalic choroid plexus in normal and hydrocephalic rabbits, in Disorders of the Developing Nervous System (W. S. Fields and M. M. Desmond, Eds.), pp. 267–318. Charles C. Thomas, Springfield (1961).

    Google Scholar 

  67. M. M. Brightman, The distribution within the brain of ferritin injected into cerebrospinal fluid compartments, J. Cell Biol. 26: 99–123 (1965).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. M. Pollay and H. Dayson, The passage of certain substances out of the cerebrospinal fluid, Brain 86: 137–150 (1963).

    Article  PubMed  CAS  Google Scholar 

  69. I. M. Glynn, The action of cardiac glycosides on ion movements, Pharmacol. Rev. 16: 381–407 (1964).

    PubMed  CAS  Google Scholar 

  70. H. Dayson and M. Pollay, Influence of various drugs on the transport of 1311 and PAH across the cerebrospinal fluid-blood barrier, J. Physiol. 167: 239–246 (1963).

    Google Scholar 

  71. H. Cserr, Potassium exchange between cerebrospinal fluid, plasma, and brain, Am. J. Physiol. 209: 1219–1226 (1965).

    PubMed  CAS  Google Scholar 

  72. A. Ames, III, K. Higashi, and F. B. Nesbett, Effects of Pco,, acetazolamide, and ouabain on volume and composition of choroid plexus fluid, J. Physiol. 181: 516–524 (1965).

    PubMed  PubMed Central  Google Scholar 

  73. R. D. Tschirgi, R. W. Frost, and J. L. Taylor, Inhibition of cerebrospinal fluid formation by a carbonic anhydrase inhibitor, 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide (Diamox), Proc. Soc. Exptl. Biol. Med. N.Y. 87: 373–376 (1954).

    Article  CAS  Google Scholar 

  74. S. Kister, Carbonic anhydrase inhibition. The effect of acetazolamide on cerebrospinal fluid flow, J. Pharmacol. Exptl. Therap. 117: 402–405 (1956).

    CAS  Google Scholar 

  75. H. Dayson and C. P. Luck, The effect of acetazolamide on the chemical composition of the aqueous humour and cerebrospinal fluid of some mammalian species and on the rate of turnover of 24Na in these fluids, J. Physiol. 137: 279–293 (1957).

    Google Scholar 

  76. R. A. Fishman, Factors influencing the exchange of sodium between plasma and cerebrospinal fluid, J. Clin. Invest. 38: 1698–1708 (1959).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. C. A. Van Wart, J. R. Dupont, and L. Kraintz, Effect of acetazolamide on passage of protein from cerebrospinal fluid to plasma, Proc. Soc. Exptl. Biol. N.Y. 106: 113–114 (1961).

    Article  Google Scholar 

  78. H. Dayson and M. Pollay, The turnover of 24Na in the cerebrospinal fluid and its bearing on the blood-brain barrier, J. Physiol. 167: 247–255 (1963).

    Google Scholar 

  79. W. W. Oppelt, C. S. Patlak, and D. P. Rall, Effect of certain drugs on cerebrospinal fluid production in the dog, Am. J. Physiol. 206: 247–250 (1964).

    CAS  Google Scholar 

  80. W. G. Stein, The Movement of Molecules Across Cell Membranes, Academic Press, New York (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Csáky, T.Z. (1969). Choroid Plexus. In: Lajtha, A. (eds) Handbook of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7321-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7321-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7301-6

  • Online ISBN: 978-1-4899-7321-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics