Skip to main content

The nature of Hodgkin and Reed-Sternberg cells, their association with EBV, and their relationship to anaplastic large-cell lymphoma

  • Chapter
Annals of Oncology

Summary

This review focuses on the cellular origin of Hodgkin and Reed-Sternberg (HRS) cells, their association with the Epstein-Barr virus (EBV), and their relation to Ki-1+ anaplastic large-cell (ALC) lymphoma. The tingibility of HRS cells in paraffin sections for polyclonal immunoglobulin represents a staining artifact and thus can no longer serve as an argument for the histiocytic nature of HRS cells. Immunolabeling studies do not support the putative relationship of HRS cells to cell types such as macrophages or interdigitating reticulum cells, but instead suggest: a) that lymphocyte-predominant (LP) Hodgkin’s disease (HD) represents a B-cell neoplasm which is distinct from non-LP HD, and b) that non-LP HD constitutes a syndrome rather than a disease entity, with the existence of T-cell types and B-cell types. HRS cells (and the tumor cells in ALC lymphomas) frequently display an immature genotype in association with late activation markers, leading to the assumption that the tumor cells in many cases of HD (and some cases of ALC lymphoma) may be derived from immature lymphoid cells that are infected by a virus that superimposes characteristics of mature activated lymphocytes on these cells. Southern blotting, in situ hybridization, and polymerase chain reaction (PCR) experiments revealed an association of EBV with HRS cells in a significant proportion of HD cases, suggesting that EBV may be responsible for the dissociation between genotype and phenotype in HRS cells, because EBV is a strong inducer of the activation antigens CD30 and CDw70. While clear-cut morphological and immunohistological differences between Ki-1+ ALC lymphoma and HD have not yet been found, the comparison of chromosomal aberrations observed in Ki-1+ ALC lymphoma and HD disclosed differences supporting the view that these two tumors are separate entities.

This work was supported by the Deutsche Krebshilfe, Mildred-Scheel-Stiftung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garvin AJ, Spicer SS, Parmley RT, Munster AM. Immunohistochemical demonstration of IgG in Reed-Sternberg and other cells in Hodgkin’s disease. J Exp Med 1974; 139: 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  2. Taylor CR. Immunohistological study of lymphoma. Eur J Cancer 1976; 12: 61.

    Article  PubMed  CAS  Google Scholar 

  3. Papadimitriou CS, Stein H, Lennert K. The Complexity of immunohistochemical staining pattern of Hodgkin and Sternberg-Reed cells. Demonstration of immunoglobulin, albumin, anti-alpha 1-chymotrypsin, and lysozyme. tnt J Cancer 1978; 21: 531–541.

    CAS  Google Scholar 

  4. Kadin M, Stites DP, Levy R, Warnke R. Exogenous immunoglobulin and the macrophage origin of Reed-Sternberg cells in Hodgkin’s disease. New Engl J Med 1978; 299: 1208–1214.

    Article  PubMed  CAS  Google Scholar 

  5. Stein H, Gerdes J, Schwab U, Lemke H, Mason DY, Ziegler A, Schienle W, Diehl V. Identification of Hodgkin and Sternberg-Reed cells as a unique cell type derived from a newly detected small cell population. Int J Cancer 1982; 30: 445–459.

    Article  PubMed  CAS  Google Scholar 

  6. Herbst H, Kratzsch HC, Niedobitek G, Anagnostopoulos I, Dienemann D, Falini B, Stein H. Immunoglobulin light chain gene transcripts and protein in Hodgkin’s disease (submitted).

    Google Scholar 

  7. Stein H, Gerdes J. Phänotypische and genotypische Marker bei malignen Lymphomen. Ein Beitrag zum zellulären Ursprung des Morbus Hodgkin and der malignen Histiozytose sowie Im-plikationen für die Klassifikation der T-Zell and B-Zell-Lymphome. Verh Dtsch Ges Path 1986; 70: 127–151.

    CAS  Google Scholar 

  8. Stein H, Mason DY, Gerdes J, O’Connor N, Wainscoat J, Pallesen G, Gatter K, Falini B, Delsol G, Lemke H, Schwarting R, Lennert K. The expression of the Hodgkin’s disease-associated antigen Ki-1 in reactive and neoplastic lymphoid tissue.–Evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 1985; 66: 848–858.

    PubMed  CAS  Google Scholar 

  9. Strauchen JA, Dimitriu-Bona A. Immunopathology of Hodgkin’s disease: Characterization of Reed-Sternberg cells with monoclonal antibodies. Am J Pathol 1986; 123: 293–300.

    PubMed  CAS  Google Scholar 

  10. Casey TT, Olson SJ, Cousar JB, Collins RD. Immunophenotypes of Reed-Sternberg cells: A study of 19 cases of Hodgkin’s disease in plastic-embedded sections. Blood 1989; 74: 2624–2628.

    PubMed  CAS  Google Scholar 

  11. Kadin ME. Possible origin of the Reed-Sternberg cell from an interdigitating reticulum cell. Cancer Treat Rep 1982; 66: 601.

    PubMed  CAS  Google Scholar 

  12. Hansmann ML, Kaiserling E. Electron microscopic aspects of Hodgkin’s disease. J Cancer Res Clin Oncol 1981; 101: 135–148.

    Article  PubMed  CAS  Google Scholar 

  13. Hsu SM, Yang K, Jaffe ES. Phenotypic expression of Hodgkin and Reed-Sternberg cells in Hodgkin’s disease. Am J Pathol 1985; 118: 209–217.

    PubMed  CAS  Google Scholar 

  14. Hsu PL, Hsu SM. Identification of an M, 70 000 antigen associated with Reed-Sternberg cells and interdigitating reticulum cells. Cancer Res 1990; 50: 350–357.

    PubMed  CAS  Google Scholar 

  15. Brenner MB, McLean J, Scheft H, Warnke RA, Jones N, Strominger JL. Characterization and expression of the human alpha-beta T cell receptor by using a framework monoclonal antibody. J Immunol 1987; 138: 1502–1509.

    PubMed  CAS  Google Scholar 

  16. Cibull ML, Stein H, Gatter KC, Mason DY. The expression of the CD3 antigen in Hodgkin’s disease. Histopathol 1989; 15: 599–605.

    CAS  Google Scholar 

  17. Mason DY, Comans-Bitter WM, Cordell JL, Verhoeven MA, van Dongen JJ. Antibody L26 recognizes an intracellular epitope on the B-cell-associated CD20 antigen. Am J Pathol 1990; 136: 1215–1222.

    PubMed  CAS  Google Scholar 

  18. Pinkus GS, Said JW. Hodgkin’s disease, lymphocyte predominance type, nodular–further evidence for a B cell derivation. Am J Pathol 1988; 133: 211–217.

    PubMed  CAS  Google Scholar 

  19. Dallenbach FE, Stein H. Expression of T-Cell-Receptor ß-Chain in Reed-Sternberg Cells. Lancet 1989; 2: 828–830.

    Article  PubMed  CAS  Google Scholar 

  20. Stein H, Gerdes J, Schwab U, Lemke H, Diehl V, Mason DY, Bartels H, Ziegler A. Evidence for the detection of the normal counterpart of Hodgkin’s and Sternberg-Reed cells. Haematol Oncol 1983; 1: 21–29.

    Article  CAS  Google Scholar 

  21. Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol 1987; 129: 86.

    PubMed  CAS  Google Scholar 

  22. Anagnostopoulos I, Herbst H, Niedobitek G, Stein H. Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1 positive large cell anaplastic lymphoma by Southern Blot and in situ Hybridization. Blood 1989; 74: 810–816.

    PubMed  CAS  Google Scholar 

  23. Weiss LM, Movahed LA, Warnke RA, Sclar J. Detection of Epstein-Barr viral genomes in Reed-Sternberg of Hodgkin’s disease. New Eng J Med 1989; 320: 502–506.

    Article  PubMed  CAS  Google Scholar 

  24. Raab Traub N, Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 1986; 47: 883–889.

    Article  PubMed  CAS  Google Scholar 

  25. Herbst H, Niedobitek G, Kneba M, Hummel M, Finn T, Anagnostopoulos I, Bergholz M, Krieger G, Stein H. High incidence of Epstein-Barr virus genomes in Hodgkin’s disease. Am J Pathol 1990; 137: 13–18.

    PubMed  CAS  Google Scholar 

  26. Mueller N, Evans A, Harris NL, Comstock GW, Jellum E, Magnus K, Orentreich N, Polk F, Vogelman J. Hodgkin’s disease and Epstein-Barr virus: Altered antibody pattern before diagnosis. New Engl J Med 1989; 320: 689–695.

    Article  PubMed  CAS  Google Scholar 

  27. Herbst H, Tippelmann G, Anagnostopoulos I, Gerdes J, Schwarting R, Boehm T, Pileri S, Jones DB, Stein H. Im-munoglobulin and T-cell receptor gene rearrangements in Hodgkin’s disease and Ki-1 positive anaplastic large cell lymphoma: Dissociation between phenotype and genotype. Leukemia Research 1989; 13: 103–116.

    CAS  Google Scholar 

  28. Sundeen J, Lipford E, Uppenkamp M, Sussman E, Wahl L, Raffeld M, Cossman J. Rearranged antigen receptor genes in Hodgkin’s disease. Blood 1987; 70: 96–103.

    PubMed  CAS  Google Scholar 

  29. Falk MH, Stein H, Tesch H, Diehl V, Jones DB, Fonatsch C, Bornkamm GW. Phenotype versus immunoglobulin and T cell receptor genotype of Hodgkin-derived cell lines: Activation of immature lymphoid cells in Hodgkin’s disease. Int J Cancer 1987; 40: 262–269.

    Article  PubMed  CAS  Google Scholar 

  30. Gregory CD, Kirchgens C, Edwards CF, Young LS, Rowe M, Forster A, Rabbitts TH, Rickenson AB. Epstein-Barr virus-transformed human precursor B cell lines: Altered growth phenotype of lines with germline or rearranged but non-expressed heavy chain genes. Eur J Immunol 1987; 17: 1199.

    Article  PubMed  CAS  Google Scholar 

  31. Mason DY, Bastard C, Rimokh R, Dastugue N, Huret JL, Kristoffersson U, Magaud JP, Nezelof C, Tilly H, Vannier JP, Hemet J, Warnke R. CD30-positive large cell lymphomas (Ki-1 lymphoma) are associated with a chromosomal translocation involving 5q35. Brit J Haematol 1990; 74: 161–168.

    Article  CAS  Google Scholar 

  32. Bitter MA, Franklin WA, Larson RA, McKeithan TW, Rubin CM, Le Beau MM, Stephens JK, Vardiman JW. Morphology in Ki-1 (CD30)-positive non-Hodgkin’s lymphoma is correlated with clinical features and the presence of a unique chromosomal abnormality, t(2;5)(p23;g35). Am J Surg Pathol 1990; 14: 305–316.

    Article  PubMed  CAS  Google Scholar 

  33. Diehl V, von Kalle C, Fonatsch C, Tesch H, Schaadt M. The Cell Biology of Hodgkin’s disease (in press).

    Google Scholar 

  34. Micklem K, Cordell J, Rigney E, Simmons D, Pulford K, Stross P, Mason DY. A macrophage-associated antigen defined by five mAb. In: Knapp W et al.: Leucocyte Typing IV, Oxford University Press, Oxford, 1990; pp. 843–846.

    Google Scholar 

  35. Backé E, Schwarting R, Gerdes J, Ennen J, Stein H. BerMAC3: A new monoclonal antibody that defines a monocyte/ macrophage activation antigen (submitted).

    Google Scholar 

  36. Gadd S. Report on unclustered antibodies. In: Knapp W et al.: Leucocyte Typing IV. Oxford University Press, Oxford, 1990; pp. 846–850.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stein, H., Herbst, H., Anagnostopoulos, I., Niedobitek, G., Dallenbach, F., Kratzsch, HC. (1991). The nature of Hodgkin and Reed-Sternberg cells, their association with EBV, and their relationship to anaplastic large-cell lymphoma. In: Ultmann, J.E., Samuels, B.L. (eds) Annals of Oncology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7305-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7305-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7294-1

  • Online ISBN: 978-1-4899-7305-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics