Skip to main content

Other Methods Of Solution

  • Chapter
  • 454 Accesses

Abstract

In the previous chapters we reviewed some methods of solution for the Boltzmann equation based on perturbation expansions, i.e., the Hilbert and Chapman—Enskog expansions and the linearization of the Boltzmann equation. The latter procedure has usually been coupled with the use of kinetic models. These models, however, have been shown to be capable of arbitrarily approximating not only the linearized Boltzmann equation, but also its solutions (Chapter VI); hence the procedures presented in Chapter VII can be considered to be exact, as long as the use of the linearized Boltzmann equation is justified. The complexity of the results obtained in Chapter VII even for relatively simple problems suggests that for more complicated problems, of linear or nonlinear nature, one should look for less sophisticated procedures yielding approximate but essentially correct results. Such procedures can be easily constructed for linearized problems or in the limit of either large or small Knudsen numbers; the intermediate range of Knudsen numbers (transition region) in nonlinear situations is at present a matter of interpolation procedures of more or less sophisticated nature. In addition, it is to be noted that a good procedure does not necessarily mean a good method of solution, since in many cases the procedure consists in deducing a system of nonlinear partial differential equations. The latter have to be solved in correspondence with particular problems, and in general they are tougher than the Navier—Stokes equations for the same problem. As a consequence one has to resort to numerical procedures to solve them. The approximation procedures can be grouped under two general headings: moment methods and integral equation methods. In the former case one constructs certain partial differential equations as mentioned above, and in the latter one tries to obtain either expansions valid for large Knudsen numbers or numerical solutions. In connection with both methods one can simplify the calculations by the use of models (sometimes in an essential manner), but one has to remember that the accuracy of kinetic models in nonlinear problems is less obvious than in the linearized ones. Finally, in connection with both methods one can apply variational procedures; again, the latter are more significant, and probably much more accurate for linearized problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Grad, Commun. Pure Appl. Math. 2, 331 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. W. Holway, Jr., Phys. Fluids 7, 911 (1964).

    Article  MATH  Google Scholar 

  3. L. Lees, “A Kinetic Theory Description of Plane Compressible Couette Flow,” GALCIT Hypersonic Research Project, Memorandum No. 51 (1959).

    Google Scholar 

  4. H. M. Mott-Smith, Phys. Rev. 82, 885 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  5. D. R. Willis, “A Study of Some Nearly-Free-Molecular Flow Problems,” Ph.D. Thesis, Princeton University (1958).

    Google Scholar 

  6. H. W. Liepmann, R. Narasimha, and M. T. Chahine, Phys. Fluids 5, 1313 (1962);

    Article  MATH  Google Scholar 

  7. D. R. Willis, in: Rarefied Gas Dynamics (J. A. Laurmann, ed.), Vol. I, p. 209, Academic Press, New York (1963),

    Google Scholar 

  8. D. Anderson, “On the Steady Krook Kinetic Equation—Part 2,” J. Plasma Phys. 1, 255 (1968).

    Article  Google Scholar 

  9. D. R. Willis, Phys. Fluids 5, 127 (1962);

    Article  MATH  Google Scholar 

  10. C. Cercignani and A. Daneri, J. Appl. Phys. 34, 3509 (1963);

    Article  MathSciNet  Google Scholar 

  11. C. Cercignani and F. Sernagiotto, Phys. Fluids 9, 40 (1966);

    Article  Google Scholar 

  12. P. Bassanini, C. Cercignani, and F. Sernagiotto, Phys. Fluids 9, 1174 (1966);

    Article  Google Scholar 

  13. P. Bassanini, C. Cercignani, and P. Schwendimann, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 505, Academic Press, New York (1967);

    Google Scholar 

  14. C. Cercignani and F. Sernagiotto, Phys. Fluids 10, 1200 (1967);

    Article  Google Scholar 

  15. P. Bassanini, C. Cercignani, and C. D. Pagani, Int. J. Heat and Mass Transfer 10, 447 (1967).

    Article  Google Scholar 

  16. C. Cercignani and G. Tironi, in: Proc. of the AIDA-AIR Meeting, p. 174, AIDA-AIR, Rome (1967);

    Google Scholar 

  17. C. Cercignani, Phys. Fluids 10, 1859 (1967).

    Article  Google Scholar 

  18. C. Cercignani and C. D. Pagani, Phys. Fluids 9, 1167 (1966).

    Article  Google Scholar 

  19. C. Cercignani, J. Stat. Phys. 1, 297 (1969);

    Article  Google Scholar 

  20. S. K. Loyalka and H. Lang, in: Rarefied Gas Dynamics (D. Dini, ed.), Vol. II, p. 779, Edizioni Tecnico-Scientifiche, Pisa (1971);

    Google Scholar 

  21. H. Lang, Acta Mech. 5, 163 (1968);

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Cercignani and C. D. Pagani, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 555, Academic Press, New York (1967);

    Google Scholar 

  23. C. Cercignani and C. D. Pagani, Phys. Fluids 11, 1395 (1968);

    Article  MATH  Google Scholar 

  24. C. Cercignani, C. D. Pagani, and P. Bassanini, Phys. Fluids 11, 1399 (1968);

    Article  MATH  Google Scholar 

  25. P. Bassanini, C. Cercignani, and C. D. Pagani, Int. J. Heat Mass Transfer 11, 1359 (1968).

    Article  MATH  Google Scholar 

  26. C. Cercignani and C. D. Pagani, in: Rarefied Gas Dynamics (L. Trilling and H. Wachman, eds.), Vol. I, p. 269, Academic Press, New York (1969).

    Google Scholar 

  27. F. S. Sherman, in: Rarefied Gas Dynamics (J. A. Laurmann, ed.), Vol. II, p. 228, Academic Press, New York (1963).

    Google Scholar 

  28. W. Dong, University of California Report UCRL 3353 (1956);

    Google Scholar 

  29. M. Knudsen, Ann. Physik 28, 75 (1909);

    Article  MATH  Google Scholar 

  30. W. P. Teagan and G. S. Springer, Phys. Fluids 11, 497 (1968);

    Article  Google Scholar 

  31. L. Kavanau, Trans. ASME 77, 617 (1955);

    Google Scholar 

  32. K. Takao, in: Rarefied Gas Dynamics (J. A. Laurmann, ed.), Vol. II, p. 102, Academic Press, New York (1963);

    Google Scholar 

  33. R. A. Millikan, Phys. Rev. 22, 1 (1923).

    Article  Google Scholar 

  34. C. Cercignani and J. Cipolla, in: Rarefied Gas Dynamics (D. Dini, ed.), Vol. II, p. 767, Edizioni Tecnico-Scientifiche, Pisa (1971).

    Google Scholar 

  35. A. B. Huang and D. P. Giddens, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 481, Academic Press, New York (1967);

    Google Scholar 

  36. M. Wachman and B. B. Hamel, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 675, Academic Press, New York (1967).

    Google Scholar 

  37. J. K. Haviland and M. L. Lavin, Phys. Fluids 5, 1399 (1962);

    Article  MathSciNet  Google Scholar 

  38. M. Perlmutter, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 455, Academic Press, New York (1967);

    Google Scholar 

  39. A. Nordsieck and B. L. Hicks, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 695, Academic Press, New York (1967);

    Google Scholar 

  40. J. O. Ballance, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 575, Academic Press, New York (1967);

    Google Scholar 

  41. G. A. Bird, in: Rarefied Gas Dynamics (J. H. de Leeuw, ed.), Vol. I, p. 216, Academic Press, New York (1965).

    Google Scholar 

  42. F. M. Devienne, ed., Rarefied Gas Dynamics, Pergamon Press, London (1960);

    Google Scholar 

  43. L. Talbot, ed., Rarefied Gas Dynamics, Academic Press, New York (1961);

    Google Scholar 

  44. J. A. Laurmann, ed., Rarefied Gas Dynamics, 2 vols., Academic Press, New York (1963);

    Google Scholar 

  45. J. H. de Leeuw, ed., Rarefied Gas Dynamics, 2 vols., Academic Press, New York (1965);

    Google Scholar 

  46. C. L. Brundin, ed., Rarefied Gas Dynamics, 2 vols., Academic Press, New York (1967);

    Google Scholar 

  47. L. Trilling and H. Wachman, eds., Rarefied Gas Dynamics, 2 vols., Academic Press, New York (1969);

    Google Scholar 

  48. D. Dini, ed., Rarefied Gas Dynamics, 2 vols., Edizioni Tecnico-Scientifiche, Pisa (1971);

    Google Scholar 

  49. K. Karamcheti, ed., Rarefied Gas Dynamics, 2 vols., Academic Press, New York (1974);

    Google Scholar 

  50. M. Becker and M. Fiebig, eds., Rarefied Gas Dynamics, 2 vols., DFVLR Press, Porz-Wahn (1974);

    Google Scholar 

  51. L. Potter, ed., Rarefied Gas Dynamics, 2 vols., AIAA, New York (1977);

    Google Scholar 

  52. R. Campargue, ed., Rarefied Gas Dynamics, 2 vols., CEA, Paris (1981);

    Google Scholar 

  53. S. S. Fisher, ed., Rarefied Gas Dynamics, 2 vols., AIAA, New York (1981);

    Google Scholar 

  54. O. Belotserkovski, M. N. Kogan, S. S. Kutateladze, and A. K. Rebrov, eds., Rarefied Gas Dynamics, 2 vols., Springer Science+Business Media New York (1985);

    Google Scholar 

  55. H. Oguchi, ed., Rarefied Gas Dynamics, 2 vols., University of Tokyo Press, Tokyo (1984);

    Google Scholar 

  56. V. Boffi and C. Cercignani, eds., Rarefied Gas Dynamics, 2 vols., Teubner, Stuttgart (1986);

    MATH  Google Scholar 

  57. D. P. Weaver, E. P. Muntz, and R. Campbell, eds., Rarefied Gas Dynamics, 3 vols., AIAA, New York (1989);

    Google Scholar 

  58. G. A. Bird, Molecular Gas Dynamics, Clarendon Press, Oxford (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cercignani, C. (1990). Other Methods Of Solution. In: Mathematical Methods in Kinetic Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7291-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7291-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7293-4

  • Online ISBN: 978-1-4899-7291-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics