Skip to main content
  • 460 Accesses

Abstract

One of the major shortcomings in dealing with the Boltzmann equation is the complicated nature of the collision integral, in both the full nonlinear version, Eq. (1.1) of Chapter II, and the linearized form, Eq. (2.2) of Chapter III. It is therefore not surprising that alternative, simpler expressions have been proposed for the collision term; they are known as collision models, and any Boltzmann-like equation where the Boltzmann collision integral is replaced by a collision model is called a model equation or a kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954);

    Article  MATH  Google Scholar 

  2. P. Welander, Arkiv. Fysik. 7, 507 (1954);

    MathSciNet  MATH  Google Scholar 

  3. M. Krook, J. Fluid Mech. 6, 523 (1959);

    Article  MathSciNet  MATH  Google Scholar 

  4. L. H. Holway, Jr., “Approximation Procedures for Kinetic Theory,” Ph.D. Thesis, Harvard University (1963)

    Google Scholar 

  5. C. Cercignani and G. Tironi, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 441, Academic Press, New York (1967).

    Google Scholar 

  6. E. P. Gross and E. A. Jackson, Phys. Fluids 2, 432 (1959);

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Sirovich, Phys. Fluids 5, 908 (1962).

    Article  MathSciNet  Google Scholar 

  8. L. H. Holway, Jr., “Sound Propagation in a Rarefied Gas Calculated from Kinetic Theory by Means of a Statistical Model,” Raytheon Co. Report T-578 (1964);

    Google Scholar 

  9. C. Cercignani and G. Tironi, Nuovo Cimento 43, 64 (1966).

    Article  Google Scholar 

  10. C. Cercignani, Ann. Phys. (N.Y.) 40, 469 (1966);

    Article  MathSciNet  Google Scholar 

  11. S. K. Loyalka and J. H. Ferziger, Phys. Fluids 10, 1833 (1967).

    Article  MATH  Google Scholar 

  12. C. Cercignani, “Boundary Value Problems in Linearized Kinetic Theory,” in: Transport Theory (R. Bellman, G. Birkhoff, and I. Abu-Shumays, eds.), SIAM-AMS Proceedings, Vol. I, p. 249, American Mathematical Society, Providence (1968);

    Google Scholar 

  13. S. F. Shen, Entropie 18, 138 (1967).

    Google Scholar 

  14. E. P. Gross, E. A. Jackson, and S. Ziering, Ann. Phys. (N.Y.) 1, 141 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Kuščer, J. Mozina, and F. Krizanic, in: Rarefied Gas Dynamics (D. Dini, S. Nocilla, and C. Cercignani, eds.), Vol. I, p. 97, Editrice Tecnico-Scientifica, Pisa (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cercignani, C. (1990). Model Equations. In: Mathematical Methods in Kinetic Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7291-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7291-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7293-4

  • Online ISBN: 978-1-4899-7291-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics