Skip to main content

Mixed Valence Chemistry and Metal Chain Compounds

  • Chapter
Low-Dimensional Cooperative Phenomena

Part of the book series: NATO Advanced Study Institutes Series ((ASIB))

Abstract

In 1896 Alfred Werner1 began to investigate what, at that time, were thought to be two isomeric forms of sodium bis-oxalatoplatinite. The curious feature which attracted Werner’s attention to these compounds was that while one was pale yellow, the other was copper red. He was soon able to show that they were not actually isomers at all, and that the yellow salt, which had the formula Na2Pt(C2O4)22H2O, could be converted into the red one only by partly oxidizing it with chlorine or bromine water. He also noted several other examples of platinum salts which likewise existed in pairs, one member being a simple divalent compound such as ()K or (PtCy4)K2 — to use his nomenclature — the other derivable fr m the first by partial oxidation. In every case the divalent compound was pale in colour while the partly oxidized one was very dark, frequently copper coloured, with the appearance of a metallic reflector: Werner had discovered the class of mixed valence platinum chain compounds about which so much has been written in the last few years, and whose properties form one of the principal topics of this Advanced Study Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Werner, Z. anorg. Chem. 12, 46 (1896).

    Article  Google Scholar 

  2. W. Knop, Ann. Chem. 43, 111 (1842).

    Article  Google Scholar 

  3. I. Bernal, E.A.V. Ebsworth and J.A. Weil, Proc. Chem. Soc., 57 (1959).

    Google Scholar 

  4. J.H. de Boer and E.J.W. Verwey, Rec. Tray. Chim. 55, 54 (1936).

    Google Scholar 

  5. E.J.W. Verwey, P.W. Haaijmann, F.C. Romeijn and G.W. van Oosterhout, Philips Res. Rep. 173 (1950).

    Google Scholar 

  6. L.S. Miller, S. Howe and W.E. Spear, Phys. Rev. 166, 871 (1968).

    Article  ADS  Google Scholar 

  7. R.E. Peierls, ‘Quantum Theory of Solids, Oxford University Press, London, 1955, p. 108.

    MATH  Google Scholar 

  8. F. Sondheimer, D.A. Ben-Efraim and R. Wolovsky, J. Amer. Chem. Soc. 83, 1675 (1961).

    Article  Google Scholar 

  9. S.S. Malhotra and M.C. Whiting, J. Chem. Soc. 3812 (1960).

    Google Scholar 

  10. M.B. Robin and P. Day, Adv. Inorg. Chem. and Radiochem. 10, 247 (1967).

    Article  Google Scholar 

  11. C. Creutz and H. Taube, J. Amer. Chem. Soc. 21, 3988 (1969).

    Article  Google Scholar 

  12. D.O. Cowan, C. LeVanda, J. Park and F. Kaufman, Acc. Chem. Res. 6, 1 (1973)

    Article  Google Scholar 

  13. U.T. Mueller-Westerhoff and P. Eilbracht, J. Amer. Chem. Soc. 24, 9272 (1972).

    Article  Google Scholar 

  14. I.G. Austin and N.F. Mott, Science 168, 71 (1970).

    Article  ADS  Google Scholar 

  15. N.S. Hush, Prog. Inorg. Chem. 8, 391 (1967).

    Google Scholar 

  16. B. Mayoh and P. Day, J. Amer. Chem. Soc. 24, 2885 (1972).

    Article  Google Scholar 

  17. T. Holstein, Ann. Phys. (N.Y.), 8, 343 (1959).

    Article  ADS  Google Scholar 

  18. M.K. Fayek and J. Leciejewicz, Z. anorg. Chem. 136, 104 (1965).

    Article  Google Scholar 

  19. D. Rogers and A.C. Skapski, Proc. Chem. Soc., 400 (1964).

    Google Scholar 

  20. D. Cahen and J.E. Lester, Chem. Phys. Lett. 18, 108 (1973)

    Article  ADS  Google Scholar 

  21. J. McGilp, Part II Thesis, Oxford, 1973.

    Google Scholar 

  22. G.W. Watt and R.E. McCarley, J. Amer. Chem. Soc. 12, 4585 (1957).

    Article  Google Scholar 

  23. For a review see D.S. Martin, Inorg. Chim. Acta Rev. 1, 107 (1971).

    Google Scholar 

  24. S. Yamada and R. Tsuchida, Bull. Chem. Soc. Japan, 22, 894 (1956).

    Article  Google Scholar 

  25. T.D. Ryan and R.E. Rundle, J. Amer. Chem. Soc. 83, 2814 (1961).

    Article  Google Scholar 

  26. P.W. Anderson, Phys. Rev. 12, 350 (1950).

    Article  ADS  Google Scholar 

  27. B. Mayoh and P. Day, J.C.S. Dalton Trans. 846 (1974).

    Google Scholar 

  28. B. Mayoh and P. Day, Inorg. Chem. 13, 2273 (1974).

    Article  Google Scholar 

  29. T.W. Thomas and A.E. Underhill, J. Chem. Soc. A, 512 (1971).

    Google Scholar 

  30. L.V. Interante, K.W. Browall and F.P. Bundy

    Google Scholar 

  31. H.G. Drickamer, C.W. Frank and C.P. Slichter, Proc. Nat.Acad. Sci. U.S.A., 62, 933 (1972).

    Article  Google Scholar 

  32. K. Krogmann and H.D. Hausen, Z. anorg. Chem. 151, 67 (1968).

    Article  Google Scholar 

  33. M.A. Butler, D.L. Rousseau and D.W.E. Buchanan, Phys. Rev. B 1, 61 (1973).

    Article  ADS  Google Scholar 

  34. W. Ruegy, D. Kuse and H.R. Zeller, Phys. Rev. B 8, 952 (1973).

    Article  ADS  Google Scholar 

  35. D. Kuse and H.R. Zeller, Phys. Rev. Lett. 21, 1060 (1971).

    Article  ADS  Google Scholar 

  36. H.R. Zeller, Festkorperprobleme, 12, 31 (1973).

    Google Scholar 

  37. B. Renker, H. Reitschel, L. Pintschovius, W. Glaser, P. Bruesch, D. Kuse and H.R. Zeller, Phys. Rev. Lett. 10, 1144 (1973).

    Article  ADS  Google Scholar 

  38. B. Renker, L. Pintschovius, W. Glaser, H. R. Comes, Rietschel,(1974).

    Google Scholar 

  39. J.H. Dieseroth and H. Schultz, Phys. Rev. Lett. 11, 96A (1974).

    Google Scholar 

  40. D. Griffiths, P. Day, C.J. Sampson and F.A. Wedgwood, Sciid State Comm., in press.

    Google Scholar 

  41. A. Magneli, Acta Cryst. 6, 495 (1953).

    Article  Google Scholar 

  42. L. Kihlborg, Adv. Chem. Ser. 12, 37 (1963).

    Article  Google Scholar 

  43. R. Norin, Acta Chem. Scand. 20, 871 (1966).

    Article  Google Scholar 

  44. L. Kihlborg, Arkiv. Kemi 21, 471 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media New York

About this chapter

Cite this chapter

Day, P. (1975). Mixed Valence Chemistry and Metal Chain Compounds. In: Keller, H.J. (eds) Low-Dimensional Cooperative Phenomena. NATO Advanced Study Institutes Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7031-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7031-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6973-6

  • Online ISBN: 978-1-4899-7031-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics