Skip to main content

The Second Generation of Cholinesterase Inhibitors: Clinical and Pharmacological Effects

  • Chapter
Cholinergic Basis for Alzheimer Therapy

Part of the book series: Advances in Alzheimer Disease Therapy ((AADT))

Abstract

One potentially important and widely studied approach to cholinomimetic therapy in Alzheimer disease (AD) is the use of substances that inhibit acetylcholinesterase (AChE). Acetylcholinesterase is the enzyme that inactivates acetylcholine (ACh) and thereby terminates the activity of the neurotransmitter. The rationale of the use of acetylcholinesterase inhibitors in AD is based on the finding that the loss of cholinergic neuronal function results in a deficiency in ACh concentrations in the CNS (Whitehouse et al., 1981; Struble et al., 1982; Coyle et al., 1983; Arendt et al., 1985). This can be regarded as a relative overactivity of AChE. AChE inhibitors reduce AChE activity and increase the duration of survival of released ACh (Giacobini 1991). The increased concentration of ACh can then stimulate the post synaptic cellular matrix, which is regarded as being relatively more intact in AD (Whitehouse et al., 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adern A, Sukhwinder SJ and Oreland L (1989): Tetrahydroaminoacridine inhibits human and rat brain monoamine oxidase. Neurosci Lett 107:313–317.

    Article  Google Scholar 

  • Agnoli A, Martucd N, Manna V, Conti L and Fioravanti M (1983): Effect of cholinergic and anticholinergic drugs on short-term memory in Alzheimer’s dementia: A neuropsychological and computerized electroencephalographic study. Clin Neuropharmacol 6:311–323.

    Article  Google Scholar 

  • Alhainen K, Partanen J, Reinikainen K, Laulumaa V, Soininen H, Airaksinen M and Riekkinen P (1991): Discrimination of Tetrahydroaminoacridine Responders by a single dose pharmaco-EEG in Alzheimer’s disease. (Submitted for publication to Lancet).

    Google Scholar 

  • Arendt T, Bigl V, Tennstedt A, and Arendt A (1985): Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience 14:1–14.

    Article  Google Scholar 

  • Ashford JW, Soldinger S, Schaeffer J, Cochran L and Jarvik LF (1981): Physostigmine and its effect on six patients with dementia. Am J Psychiatry 138:829–830.

    Google Scholar 

  • Ashmark H, Aquilonius S-M, Gillberg P, Hartvig P, Hilton-Brown P, Lindstrom B, Nilsson D, Stalberg E, Winkler T (1990): Functional and pharmacokinetic studies of tetrahydroaminoacridine in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 82:253–258.

    Article  Google Scholar 

  • Atack JR, Yu Q-S, Soncrant T, Brossi A and Rapoport SI (1989): Comparative inhibitory effects of various physostigmine analogs against acetyl-and butyrylcholinesterases. J Pharmacol Exp Ther 249:194–202.

    Google Scholar 

  • Bajada S (1982): A trial of choline chloride and physostigmine in Alzheimer’s dementia. In: Alzheimer’s Disease: A Report of Progress (Aging, Volume 19), Corkin S et al., New York: Raven Press.

    Google Scholar 

  • Barnard EA and Rogers AW (1967): Determination of the number, distribution, and some in situ properties of cholinesterase molecules in the motor endplate, using labeled inhibitor methods. Ann N Y Acad Sci 144:584–612.

    Article  Google Scholar 

  • Becker RE and Unni LK (1991): Inhibition of human plasma and RBC cholinesterase by heptylphysostigmine. Second International Springfield Symposium of Advances in Alzheimer Therapy Abst pp. 4.

    Google Scholar 

  • Becker RE, Colliver J, Elble R, Feldman E, Giacobini E, Kumar V, Markwell S, Moriearty P, Parks R, Shillcutt SD, Unni L, Vicari S, Womack C, and Zec RF (1990): Effects of metrifonate, a long-acting cholinesterase inhibitor, in Alzheimer disease: report of an open trial. Drug Dev Res 19:425–434.

    Article  Google Scholar 

  • Becker RE, and Giacobini E (1988): Mechanisms of cholinesterase inhibition in senile dementia of the Alzheimer type: Clinical, pharmacological, and therapeutic aspects. Drug Dev Res 12:163–195.

    Article  Google Scholar 

  • Belier SA, Overall JE, Rhoades HM and Swann AC (1988): Long-term outpatient treatment of senile dementia with oral physostigmine. J Clin Psychiatry 49:400–404.

    Google Scholar 

  • Belier SA, Overall JE and Swann AC (1985): Efficacy of oral physostigmine in primary degenerative dementia. Psychopharmacology 87:147–151.

    Article  Google Scholar 

  • Blackwood DHR and Christie JE (1986): The effects of physostigmine on memory and auditory P300 in Alzheimer-type dementia. Biol Psychiatry 21:557–560.

    Article  Google Scholar 

  • Boiler F and Forette F (1989): Alzheimer’s disease and THA: a review of the cholinergic theory and of preliminary results. Biomed & Pharmacother 43:487–491.

    Article  Google Scholar 

  • Caltagirone C, Gainotti G and Masullo C (1982): Oral administration of chronic physostigmine does not improve cognitive or mnemic performances in Alzheimer’s presenile dementia. Int J Neurosci 16:247–249.

    Article  Google Scholar 

  • Chatellier G, and Lacomblez L (1990): Tacrine (tetrahydroaminoacridine; THA) and lecithin in senile dementia of the Alzheimer type: a multicentre trial. Brit Med J 300:495–499.

    Article  Google Scholar 

  • Christie JE, Shering A, Ferguson J and Glen ALM (1981): Physostigmine and arecoline: Effects of intravenous infusions in Alzheimer presenile dementia. Br J Psychiatry 138:46–50.

    Article  Google Scholar 

  • Coleman PD and Flood DG (1987): Neuro numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8:521–545.

    Article  Google Scholar 

  • Cooper JR, Bloom FE, and Roth RH (1986): The Biochemical Basis of Neuropharmacology Fifth Edition, Oxford University Press, New York.

    Google Scholar 

  • Costa LG, Schwab BW and Murphy SD (1982): Tolerance to anticholinesterase compounds in mammals. Toxicology 25:79–97.

    Article  Google Scholar 

  • Coyle JT, Price DL and DeLong MR (1983): Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190.

    Article  Google Scholar 

  • Cutler NR, Murphy MF, Nash RJ, Prior PL and De Luna DM (1990): Clinical Safety, Tolerance, and Plasma Levels of the Oral Anticholinesterase l,2,3,4-Tetrahydro-9-aminoacridine-l-ol maleate (HP 029) in Alzheimer’s disease: Preliminary Findings. J Clin Pharmacol 30:556–561.

    Article  Google Scholar 

  • Davies B, Andrews D, Stargatt R, Ames D, Tuckwell V and Davis S (1989): Tacrine in Alzheimer’s disease. Lancet 301:163–164.

    Article  Google Scholar 

  • Davis KL and Mohs RC (1982): Enhancement of memory process in Alzheimer’s disease with multiple-dose intravenous physostigmine. Am J Psychiatry 139:1421–1424.

    Google Scholar 

  • Davis KL and Mohs RC (1979): Enhancement of memory by physostigmine. N Eng J Med 301:946.

    Google Scholar 

  • DeKosky ST and Scheff SW (1990): Synapse loss in frontal cortex biopsies in Alzheimer’s disease: Correlation with cognitive severity. Ann Neurol 27:457–464.

    Article  Google Scholar 

  • Delwaide PJ, Devoitille JM and Ylieff M (1980): Acute effect of drugs upon memory of patients with senile dementia. Acta Psychiatr Belg 80:748–754.

    Google Scholar 

  • DeSarno P, Pomponi M, Giacobini E, Tang XC and Williams E (1989): The effect of Heptyl-physostigmine, a new cholinesterase inhibitor, on the central cholinergic system of the rat. Neurochem Res 14:971–977.

    Article  Google Scholar 

  • Eagger SA, Levy R and Sahakian BJ (1991): Tacrine in Alzheimer’s disease. Lancet 337:989–992.

    Article  Google Scholar 

  • Elble R, Giacobini E, Becker R, Zec R, Vicari S, Womack C, Williams E, and Higgins C (1988): Treatment of Alzheimer dementia with steadystate infusion of physostigmine. In: Current Research in Alzheimer Therapy, Giacobini E and Becker R, eds. New York: Taylor & Francis, pp. 123–139.

    Google Scholar 

  • Fitten LJ, Perry KM, Gross P, Fine H, Cummins J and Marshall C (1990): Treatment of Alzheimer’s disease with short-and long-term oral THA and lecithin: A double-blind study. Am J Psychiatry 147:239–242.

    Google Scholar 

  • Fitten LJ, Perryman KM, Gross P, Steinberg A, Fine H and Cummins J (1988): Inpatient treatment of Alzheimer’s disease by THA. American Psychiatric Association Abst (Montreal, Canada).

    Google Scholar 

  • Forsyth DR, Wilcock GK, Morgan RA, Truman CA, Ford JM and Roberts CJC (1989): Pharmacokinetics of tacrine hydrochloride in Alzheimer’s disease. Clin Pharmacol Ther 46:634–41.

    Article  Google Scholar 

  • Gauthier S, Bouchard R, Lamontagne A, Bailey P, Bergman H, Ratner J, Tesfaye Y, St-Martin M, Bacher Y, Carrier L, Charbonneau R, Clarfield AM, Collier B, Dastoor D, Gautheir L, Germain M, Kissel C, Krieger M, Kushnir S, Masson H, Morin J, Nair V, Neirinck L and Suissa S (1990): Tetrahydroaminoacridine-Lecithin combination treatment in patients with intermediate-stage Alzheimer’s disease. New Engl J Med 322:1272–6.

    Article  Google Scholar 

  • Gauthier S, Bouchard R, Bacher Y, Bailey P, Bergman H, Carrier L, Charbonneau R, Clarfield M, Collier B, Dastoor D, Gauthier L, Germain M, Kissel M, Krieger M, Kushnir S, Lamontagne A, Morin J, Nair NPV, Neirinck L, Ratner J. St-Martin M, Suissa S and Tesfaye Y (1989): Progress report on the Canadian multicentre trial of tetrahydroamino-acridine with lecithin in Alzheimer’s disease. Can J Neurol Sci 16:543–546.

    Google Scholar 

  • Gauthier S, Masson H, Gauthier L, Bouchard R, Collier, Bacher Y, Bailey R, Becker R, Bergman H, Charbonneau R, Dastoor D, Gayton D, Jennedy J, Kissel C, Krieger M, Suchnir S, Lamontagne A, St-Martin M, Morin J, Nair NPV, Neirinck L, Ratner J, Suissa S, Tesfaye Y and Vida S (1988): Tetrahydroaminoacridine and lecithin in Alzheimer’s disease. In: Current Research in Alzheimer Therapy, Giacobini E and Becker R (eds), New York: Taylor & Francis, pp. 237–246.

    Google Scholar 

  • Giacobini E (1991): The second generation of cholinesterase inhibitors: Pharmacological Aspects. Second International Springfield Symposium of Advances in Alzheimer Therapy Abst, pp. 13.

    Google Scholar 

  • Giacobini E, Becker R, Mcllhany M and Kumar V (1988): Intracerebro-ventricular administration of cholinergic drugs: Preclinical trials and clinical experience in Alzheimer patients. In: Current Research in Alzheimer Therapy, Giacobini E and Becker R (eds), New York: Taylor & Francis, pp. 113–122.

    Google Scholar 

  • Giacobini E, Somani S, Mcllhany M, Downen M and Hallak M (1987): Pharmacokinetics and pharmacodynamics of physostigmine after i.V. administration in beagle dogs. Neuropharmacology 26:831–836.

    Article  Google Scholar 

  • Goldberg MR, Barchowsky A, McCrea J, Ben-Maimon C, Capra N, Fitzpatrick V and Bjornsson TD (1991): Heptyl-physostigmine (L-693,487): Safety and cholinesterase inhibition in a placebo-controlled rising dose healthy volunteer study. Second International Springfield Symposium of Advances in Alzheimer Therapy Abst pp. 22.

    Google Scholar 

  • Gustafson L, Edwinsson L, Dahlgren N, Hagberg B, Risberg J, Rosen I and Ferno H (1987): Intravenous physostigmine treatment of Alzheimer’s disease evaluated by psychometric testing, regional cerebral blood flow (rCBF) measurement, and EEG. Psychopharmacology 93:31–35.

    Article  Google Scholar 

  • Hallak M and Giacobini E (1989): Physostigmine, Tacrine and Metrifonate: the effect of multiple doses on acetylcholine metabolism in rat brain. Neuropharmacology 28:199–206.

    Article  Google Scholar 

  • Hallak M and Giacobini E (1987): A comparison of the effects of two inhibitors on brain cholinesterase. Neuropharmacology 26:521–530.

    Article  Google Scholar 

  • Harrell LE, Callaway R, Morere D and Falgout J (1990): The effect of longterm physostigmine administration in Alzheimer’s disease. Neurology 40:1350–1354.

    Article  Google Scholar 

  • Hartvig P, Askmark H, Aquilonius SM, Wiklund L and Lindstrom B (1990): Clinical pharmacokinetics of intravenous and oral 9-amino-1,2,3,4-tetrahydroacridine, tacrine. Eur J Clin Pharmacol 38:259–263.

    Article  Google Scholar 

  • Hartvig P, Wiklund L and Lindstrom B (1986): Pharmacokinetics of physostigmine after intravenous, intramuscular and subcutaneous administration in surgical patients. Acta Anaesthesiol Scand 30:177–182.

    Article  Google Scholar 

  • Ho AKS and Freeman SE (1965): Anticholinesterase activity of tetrahydroaminacrine and succinyl choline hydrolysis. Nature 205:1118–1119.

    Article  Google Scholar 

  • Jenike MA, Albert MS and Baer L (1990a): Oral physostigmine as treatment for dementia of the Alzheimer type: A long-term outpatient trial. Alzheimer Disease and Associated Disorders 4:226–231.

    Article  Google Scholar 

  • Jenike MA, Albert M, Baer L and Günther J (1990b): Oral physostigmine as treatment for primary degenerative dementia: A double-blind placebocontrolled inpatient trial. J Geriatr Psychiatry Neurol 3:13–17.

    Article  Google Scholar 

  • Jenike MA, Albert MS, Heller H, Günther J and Goff D (1990c): Oral physostigmine treatment for patients with presenile and senile dementia of the Alzheimer’s type: A double-blind placebo-controlled trial. J Clin Psychiatry 51:3–7.

    Google Scholar 

  • Johns CA, Mohs RC, Hollander E, Davis BM, Greenwald BS, Davidson M, Horvath TB and Davis KL (1986): Clinical studies of the cholinergic deficit in Alzheimer’s disease. In: Dynamics of Cholinergic Function, Hanin I, ed. New York: Plenum Press, pp. 133–152.

    Chapter  Google Scholar 

  • Johns CA, Haroutunian V, Greenwald BS, Mohs RC, Davis BM, Kanof P, Horvath TB and Davis KL (1985): Development of cholinergic drugs for the treatment of Alzheimer’s disease. Drug Dev Res 5:77–96.

    Article  Google Scholar 

  • Jotkowitz S (1983): Lack of clinical efficacy of chronic oral physostigmine in Alzheimer’s disease. Ann Neurol 14:690–691.

    Article  Google Scholar 

  • Kaye WH, Sitaram N, Weingartner H, Ebert MH, Smallberg S and Gillin JC (1982): Modest facilitation of memory in dementia with combined lecithin and anticholinerestase treatment. Biol Psychiatry 17:275–280.

    Google Scholar 

  • Klein, DF (1990): Psychotropic drug development: challenge and promise. Biol Psychiatry 27:1061–4.

    Article  Google Scholar 

  • Kumar V, and Becker RE (1989): Clinical pharmacology of tetrahydroaminoacridine: a possible therapeutic agent for Alzheimer disease. Intl J Clin Pharm Ther Toxicol 27:478–485.

    Google Scholar 

  • Masur DM, Blau AD, Thal LJ and Fuld PA (1988): Measuring Changes in memory & cognitive functioning in Alzheimer’s disease with administration of oral physostigmine. In: Current Research in Alzheimer Therapy, Giacobini E and Becker R, eds. New York: Taylor & Francis, pp. 141–152.

    Google Scholar 

  • Mediolanum Farmaceutici (1989): Investigators’ Brochure. Unpublished results.

    Google Scholar 

  • Mesulem M (1991): Cortical cholinesterases in Alzheimer’s diease. Second International Springfield Symposium of Advances in Alzheimer Therapy Absty pp. 27.

    Google Scholar 

  • Mikailova D, Yamboliev I, Zhivkova Z, Tencheva J and Jovovich V (1989): Pharmacokinetics of Galanthamine Hydrobromide after single subcutaneous and oral dosage in humans. Pharmacology 39:50–58.

    Article  Google Scholar 

  • Mikailova D and Yamboliev I (1986): Pharmacokinetics of galanthamine hydrobromide (Nivalin®) following single intravenous and oral administration in rats. Pharmacology 32:301–306.

    Article  Google Scholar 

  • Mohs RC, Davis BM, Johns CA, Mathe AA, Greenwald BS, Horvath TB and Davis KL (1985): Oral Physostigmine treatment of patients with Alzheimer’s disease. Am J Psychiatry 142:28–33.

    Google Scholar 

  • Mohs RC and Davis KL (1982): A signal detectability analysis of the effect of physostigmine on memory in patients with Alzheimer’s disease. Neurobiol Aging, 3:105–110.

    Article  Google Scholar 

  • Molloy DW, Guyatt GH, Wilson DB, Duke R, Rees L and Singer J (1991): Effect of tetrahydroaminoacridine on cognition, function and behaviour in Alzheimer’s disease. Can Med Assoc J 144:29–34.

    Google Scholar 

  • Moriearty PL and Becker RE (1991): Inhibition of human brain and RBC acetylcholinesterase (AChE) by heptyl-physostigmine. Second International Springfield Symposium of Advances in Alzheimer Therapy Abst pp. 39.

    Google Scholar 

  • Moriearty PL, Kenny W and Kumar V (1989): Estimation of plasma tacrine — concentrations using an in vitro cholinesterase inhibition assay. Alz Disease and Assoc Disorders 3:143–147.

    Article  Google Scholar 

  • Muramoto O, Sugishita M and Ando K (1984): Cholinergic system and constructional praxis: a further study of physostigmine in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 47:485–491.

    Article  Google Scholar 

  • Muramoto O, Morihiro S, Sugita H and Toylkura Y (1979): Effect of physostigmine on constructional and memory tasks in Alzheimer’s Disease. Arch Neurol 36:501–503.

    Article  Google Scholar 

  • Neary D, Snowden JS, Mann DMA, Bowen DM, Sims NR, Northen B, Yates P and Davison AN (1986): Alzheimer’s disease: a correlative study. J Neurol Neurosurg Psychiatry 49:229–237.

    Article  Google Scholar 

  • Nordberg A, Nilsson H, Akansson L, Adem A, Lai Z and Winblad B (1989): Multiple actions of THA on cholinergic neurotransmission in Alzheimer brains. Prog Clin Biol Res 317:1169–1178.

    Google Scholar 

  • Nordberg A, Nilsson H, Adem A, Hardy J and Winblad B (1988): Effect of THA on acetylcholine release and cholinergic receptors in Alzheimers Brains. In: Current Research in Alzheimer Therapy, Giacobini E and Becker R, eds. New York: Taylor & Francis, pp. 247–258.

    Google Scholar 

  • Nordgren I, Bengtsson E and Hohnsted B (1981): Levels of Metrifonate and Dichlorvos in plasma and erythrocytes during treatment of schistosomiasis with Bilarcil. Acta Pharm Toxicol, 49:79–86.

    Article  Google Scholar 

  • Nordgren E, Bergstrom M and Holmsted B (1978): Transformation and action of Metrifonate. Arch Toxicol 41:31–41.

    Article  Google Scholar 

  • Nybäck H, Ahlin A, Juntti T and Oman G (1989): Tetrahydroaminoacridine in Alzheimer’s Dementia: Clinical and Biochemical Results of a Doubleblind Crossover Study. In: Pharmacological Interventions on Central Cholinergic Mechanisms in Senile Dementia (Alzheimer’s Disease), Kewitz, Thomsen and Bickel, eds. München: W Zuckschwerdt Verlag.

    Google Scholar 

  • Nybäck H, Nyman H, Ohman G, Nordgren I and Lindstrom B (1988): Preliminary experiences and results with THA for the amelioration of symptoms of Alzheimer’s disease. In: Current Research in Alzheimer Therapy, Giacobini E and Becker R, eds. New York: Taylor & Francis, pp. 231–236.

    Google Scholar 

  • Overstreet DH (1984): Behavioural plasticity and the cholinergic system. Prog Neuropsychopharm Biol Psychiatry 8:133–151.

    Article  Google Scholar 

  • Park TH, Tachiker KB, Summers WK (1986): Isolation and the flusometric, high performance liquid Chromatographic determination of tacrine. Anal Biochem 159:358–362.

    Article  Google Scholar 

  • Perry EK, Smith CJ, Court JA, and Perry RH (1990): Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types. J Neural Transm 2:149–158.

    Article  Google Scholar 

  • Peters BH and Levin HS (1982): Chronic oral physostigmine and lecithin administration in memory disorders of aging. In: Alzheimer’s Disease: A Report of Progress (Aging, Volume 19), Corkin S et al., eds. New York: Raven Press.

    Google Scholar 

  • Peters BH and Levin HS (1979): Effects of Physostigmine and Lecithin on memory in Alzheimer disease. Ann Neurol 6:219–221.

    Article  Google Scholar 

  • Puri SK, Hsu RS, Ho I and Lassman HB (1989): The effect of food on the bioavailability of Velnacrine 9HP 029) in healthy elderly men: a potential Alzheimer agent. J Clin Pharmacol 29:956–960.

    Article  Google Scholar 

  • Ravaris CL, Nies A, Robinson DS, Ives JO, Lamborn KR and Korson L (1976): A multiple dose, controlled study of phenelzine in depressionanxiety states. Arch Gen Psychiatry 33:347–350.

    Article  Google Scholar 

  • Rainer M (1991): Presentation of a pilot study with Galanthamine Hydrobromide — a new cholinesterase inhibitor. Second International Springfield Symposium of Advances in Alzheimer Therapy Abst, pp. 46.

    Google Scholar 

  • Rainer M, Mark TH and Haushofer A (1989): Galanthamine hydrobromide in the treatment of senile dementia of Alzheimer’s type. In: Pharmacological Interventions on Central Cholinergic Mechanisms in Senile Dementia (Alzheimer’s Disease), Kewitz, Thomsen and Bickel, eds. München: W Zuckschwerdt Verlag.

    Google Scholar 

  • Reiner E and Plestina R (1979): Regeneration of cholinesterase activities in humans and rats after inhibition by o,o-dimethyl 1-2,2-dichlorovinyl phosphate. Toxicol Appl Pharmacol 49:451–454.

    Article  Google Scholar 

  • Robinson TN, DeSouza RJ, Cross AJ and Green AR (1989): The mechanism oftetrahydroaminoacridine-evokedreleaseofendogenous5-hydroxytryptamine and dopamine from rat brain tissue prisms. Br J Pharmacol 98:1127–1136.

    Article  Google Scholar 

  • Rogawski MH (1987): Tetrahydroaminoacridine blocks voltage-dependent ion channels in hippocampal neurons. Eur J Pharmacol 142:169–172.

    Article  Google Scholar 

  • Rose RP and Moulthrop MA (1986): Differential Responsivity of verbal and visual recognition memory to physostigmine and ACTH. Biol Psychiatry 21:538–542.

    Article  Google Scholar 

  • Russell RW and Overstreet DH (1987): Mechanisms underlying sensitivity to organophosphorus anticholinesterase compounds. Prog Neurobiol 28:97–129.

    Article  Google Scholar 

  • Russell RW (1982): Cholinergic system in behaviour: the search for mechanisms of action. Rev Pharmacol Toxicol 22:435–463.

    Article  Google Scholar 

  • Sahakian B, Joyce E and Lishman WA (1987): Cholinergic effects on constructional abilities and on mnemonic processes: a case report. Psychol Med 17:329–333.

    Article  Google Scholar 

  • Schwartz AS and Kohlstaedt EV (1986): Physostigmine effects in Alzheimer’s disease: Relationship to dementia severity. Life Sci 38:1021–1028.

    Article  Google Scholar 

  • Sherman KA (1991): Protection against diisopropylfluorophosphate (DFP) as a novel way to measure efficacy of reversible acetylcholinesterase inhibitors for dementia by ex vivo assay. Second International Springfield Symposium of Advance in Alzheimer Therapy Abst, pp. 50.

    Google Scholar 

  • Sherman KA and Messamore E (1988): Blood cholinesterase inhibition as a guide to efficacy of putative therapies for Alzheimer’s dementia: comparison of Tacrine and Physostigmine. In: Current Research in Alzheimer Therapy, Giacobini E and Becker R, eds. New York: Taylor & Francis, pp. 73–86.

    Google Scholar 

  • Sherman KA, Kumar V, Ashford JW, Murphy JW, Elble RJ and Giacobini E (1987): Effect of oral physostigmine in senile dementia patients: utility of blood cholinesterase inhibition and neuroendocrine responses to define pharmacokinetics and pharmacodynamics. In: CNS disorders of Aging: Strategies for Intervention, Strong R et al., eds. New York: Raven Press, pp. 71–90.

    Google Scholar 

  • Sherman KA, Ashford JW, Elble RJ, Hess J and Kumar V (1986): Effect of oral physostigmine in senile dementia patients. Geriatric Society Abst..

    Google Scholar 

  • Smith CM, Semple SA and Swash M (1982): Effects of physostigmine on responses in memory tests in patients with Alzheimer’s disease. In: Alzheimer’s Disease: A Report of Progress (Aging, Volume 19), Corkin S et al., eds. New York: Raven Press, pp. 405–411.

    Google Scholar 

  • Smith CM and Swash M (1979): Physostigmine in Alzheimer’s disease. Lancet 1:42.

    Article  Google Scholar 

  • Soininen HS, Unni LK, Shillcutt S (1991): Effects of acute and chronic cholinesterase inhibition on biogenic amines in rat brain. Neurochem Res (In Press).

    Google Scholar 

  • Stern Y, Sano M and Mayeux R (1988): Long-term administration of oral physostigmine in Alzheimer disease. Neurology 38:1837–1841.

    Article  Google Scholar 

  • Stern Y, Sano M and Mayeux R (1987): Effects of oral physostigmine in Alzheimer’s disease. Ann Neurol 22:306–310.

    Article  Google Scholar 

  • Sterri SH, Lyngaass S and Fonnum F (1980): Toxicity of soman after repetitive injection of sublethal doses in rat. Acta Pharm Toxicol 46:1–7.

    Article  Google Scholar 

  • Stevens DR and Cotman CW (1987): Excitatory actions of tetrahydro-9-aminoacridine (THA) on hippocampal pyramidal neurons. Neurosci Lett 79:301–305.

    Article  Google Scholar 

  • Struble RG, Cork LC, Whitehouse PJ and Price DL (1982): Cholinergic innervation in neuritic plaques. Science, 216:413–445.

    Article  Google Scholar 

  • Sullivan EV, Shedlack KJ, Corkin S and Growdon JH (1982): Physostigmine and Lecithin in Alzheimer’s disease. In: Alzheimer’s Disease: A Report of Progress (Aging, Volume 19), Corkin S et al., eds. New York: Raven Press, pp. 361–367.

    Google Scholar 

  • Summers WK, Tachiki KH and Kling A (1989): Tacrine in the treatment of Alzheimer’s disease. Eur Neurol 29:28–32.

    Article  Google Scholar 

  • Summers WK, Majovski LV, Marsh GM, Tachiki K and Kling A (1986): Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N Engl J Med 315:1241–1245.

    Article  Google Scholar 

  • Summer WK, Viesselman JO, Marsh GM and Candelora K (1981): Use of THA in Treatment of Alzheimer-Like Dementia: Pilot Study in Twelve Patients. Bio Psych 16:145–153.

    Google Scholar 

  • Taylor P (1990): Anticholinesterase agents. In: The Pharmacological Basis of Therapeutics (8th Ed.), Gilman AG, Rall TW, Nies AS and Taylor P, eds. New York: Pergamon Press, pp. 131–149.

    Google Scholar 

  • Terry RD (1991): The quantification of synapses in human and animals CNS. Winter Conference on Brain Research Abst, pp. 24.

    Google Scholar 

  • Thal LJ, Masur DM, Blau AD, Fuld PA and Klauber MR (1989): Chronic oral physostigmine without lecithin improves memory in Alzheimer’s disease. J Am Geriatr Soc 37:42–48.

    Google Scholar 

  • Thal LJ, Masur DM, Sharpless NS, Fuld PA and Davies P (1986): Acute and chronic effects of oral physostigmine and lecithin in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 10:627–636.

    Article  Google Scholar 

  • Thal LJ and Fuld PA (1983a): Memory enhancement with oral physostigmine in Alzheimer’s disease. N Eng J Med 308:720.

    Article  Google Scholar 

  • Thal J, Fuld PA, Masur DM and Sharpless NS (1983b): Oral physostigmine and lecithin improve memory in Alzheimer disease. Ann Neurol 13:491–496.

    Article  Google Scholar 

  • Thal LJ, Masur DM, Fuld PA, Sharpless NS and Davies P (1983c): Memory improvement with oral physostigmine and lecithin in Alzheimer’s disease. In: Banbury Report 15 — Biological Aspects of Alzheimer’s Disease, Katzman R, ed. New York: Cold Spring Harbor Laboratory, pp. 461–470.

    Google Scholar 

  • Thomsen T and Kewitz H (1990): Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci 46:1553–1558.

    Article  Google Scholar 

  • Unni LK, Womack C, Moriearty PL, Hannant M and Becker RE (1991a): Clinical pharmacokinetics and pharmacodynamics of metrifonate. Second International Springfield Symposium of Advances in Alzheimer Therapy Abst, pp. 59.

    Google Scholar 

  • Unni LK, Hutt V, Imbimbo BP and Becker RE (1991b): Kinetics of cholinesterase inhibition of eptastigmine in man. Eur J Clin Pharmacol (In Press).

    Google Scholar 

  • Unni LK and Somani SM (1986): Hepatic and muscle clearance of physostigmine in the rat. Drug Metab Dispos 14:183–189.

    Google Scholar 

  • van Dongen CJ and Wolthuis OL (1989): On the development of behavioral tolerance to organophosphates I: behavioral and biochemical aspects. Pharmacol Biochem Behav 34:473–481.

    Article  Google Scholar 

  • Wettstein A (1983): No effect from double-blind trial of physostigmine and lecithin in Alzheimer disease. Ann Neurol 13:210–212.

    Article  Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT and DeLong MR (1981): Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126.

    Article  Google Scholar 

  • Yu Q-S, Atack JR, Rapoport SI and Brossi A (1988a): Synthesis and anticholinesterase activity of (−)-N1-norphysostigmine, ( )-eseramine, and other N91)-substituted analogues of (−)-Physostigmine. J Med Chem 31:2297–2300.

    Article  Google Scholar 

  • Yu Q-S, Atack JR, Rapoport SI and Brossi A (1988b): Carbamate analogues of (−)-physostigmine: in vitro inhibition of acetyl-and butyrylcholinester-ase. FEBS Lett 234:127–130.

    Article  Google Scholar 

  • Zec RF, Landreth ES, Vicari SK, Feldman E, Belman J, Adrise A, Robbs R, Kumar V and Becker R (1991): The advantages and disadvantages of using the ADAS as a measure of cognitive functioning in clinical psychopharmacological studies. Second International Springfield Symposium of Advances in Alzheimer Therapy Abst, pp. 63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Becker, R.E., Moriearty, P., Unni, L. (1991). The Second Generation of Cholinesterase Inhibitors: Clinical and Pharmacological Effects. In: Becker, R., Giacobini, E. (eds) Cholinergic Basis for Alzheimer Therapy. Advances in Alzheimer Disease Therapy. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6738-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6738-1_30

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6740-4

  • Online ISBN: 978-1-4899-6738-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics