Skip to main content

The Fungal Cell Wall — A Target For Lipopeptide Antifungal Agents

  • Chapter
New Approaches for Antifungal Drugs

Abstract

There are two key factors that justify the search for safer and more effective antifungal agents for human medicine. First, the currently available antifungal therapy, especially for life-threatening disseminated fungal infections, is not satisfactory because of limited efficacy and/or toxicity (Graybill, 1989). Second, there is an increased incidence of fungal infections attributed to the aggressive use of cancer chemotherapy, organ transplantation, and opportunistic infections associated with acquired immunodeficiency syndrome (AIDS) patients (Patterson and Andriole, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alborn WE Jr, Allen NE, Preston DA (1991): Daptomycin disrupts membrane potential in growing Staphylococcus aureusAntimicrob Agent Chemother 135:2282–2287

    Article  Google Scholar 

  • Allen NE, Hobbs JN Jr, Alborn WE Jr (1987): Inhibition of peptidoglycan biosynthesis in gram-positive bacteria by LY146032. Antimicrob Agent Chemother 31:1093–1099

    Article  Google Scholar 

  • Abbott BJ, Fukuda D: Derivatives of S31794/F-1 U.S. Patent 4,287, 120, Dec. 8, 1981. (Eli Lilly and Co)

    Google Scholar 

  • Benz F, Knusel F, Nuesch J, Treichler H, Voser W, Nyfeler R, Keller-Schierlein W (1974): Stoffwechselproduckte von microoganismen. 143. Echinocandin B, ein neuartiges polypeptid-antibiotikum aus Aspergillus nidulans var echinulatus: isolierung und bausteine. Helv Chim Acta 57:2459–2477

    Article  Google Scholar 

  • Boeck LD, Fukuda DS, Abbott BJ, Debono M (1988): Deacylation of echinocandin B by Actinoplanes utahensis. J Antibiot 42:1085–1092

    Article  Google Scholar 

  • Boylan CJ, Current WL (1990): Anti-pneumocystis activity of antifungal compounds cilofungin and echinocandin B. Annual Midwestern Conference of Parasitologists, University of Illinois, Urbana, Illinois, June 1–2, Abstract 6, p 16

    Google Scholar 

  • Cassone A (1986): Cell wall of pathogenic yeasts and implication for antimycotic therapy. Drugs Expt Clin Res 12:635–643

    Google Scholar 

  • Cassone A, Mason RE, Kerridge D (1981): Lysis of growing yeast cells of Candida albicans by echinocandin: a cytological study. Sabouraudia 19:97–110

    Article  Google Scholar 

  • Debono M, Abbott BJ, Molloy RM, Fukuda DS, Hunt AH, Daupert VM, Counter FT, Ott JL, Carrell CB, Howard LC, Boeck LD, Hamill RL (1988a): Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). J Antibiot 41:1093–1105

    Article  Google Scholar 

  • Debono M, Abbott BJ, Fukuda DS, Barnhart M, Willard KE, Molloy RM, Michel KH, Turner JR, Butler TF, Hunt AH (1989): Synthesis of new analogs of echinocandin B by enzymatic deacylation and chemical reacylation of the echinocandin B peptide: synthesis of the antifungal agent cilofungin (LY121019). J Antibiot 42:389–397

    Article  Google Scholar 

  • Debono M, Gordee RS (1990): Drug discovery: nature’s approach. In: Handbook of Experimental Pharmacology, Chemotherapy of Fungal Diseases, vol 96, Ryley JF ed., Berlin: Springer—Verlag, pp 77–109

    Chapter  Google Scholar 

  • Debono M, Abbott BJ, Turner JR, Howard LC, Gordee RS, Hunt AS, Barnhart M, Mollo RM, Willard KE, Fukuda D, Butler TF, Zeckner DJ (1988b): Synthesis and evaluation of LY121019, a member of a series of semisynthetic analogues of the antifungal lipopeptide echinocandin B. Ann NY Acad Sci 544:152–167

    Article  Google Scholar 

  • Denning DW, Stevens DA (1991): Efficacy of cilofungin alone and in combination with amphotericin B in a murine model of disseminated aspergillosis. Antimicrob Agent Chemother 35:1329–1333

    Article  Google Scholar 

  • Dreyfuss MM, Terscher H: Antibiotic S 31794/F-1; Germany Offen. DE 2628965; Jan. 20, 1977, (Sandoz S. A.)

    Google Scholar 

  • Fevre M (1979): Digitonin solubilization and protease stimulation of β-glucan synthetases of Saprolegnia. Z Pflanzenphysiol 95:129–140

    Google Scholar 

  • Fevre M (1984): ATP and GTP stimulates membrane-bound but not digitoninsolubilized β-glucan synthase for Saprolegnia monica. J Gen Microbiol 130:3279–3284

    Google Scholar 

  • Fromitling RA, Abruszzo GK (1989): L-671, 329, a new antifungal agent. III. In vitro activity, toxicity and efficacy in comparison to aculeacin. J Anitbiot 174–178

    Google Scholar 

  • Gordee RS, Zeckner DJ, Ellis LF, Thakkar AL, Howard LC (1984): In vitro and in vivo anti-Candida activity and toxicology of LY121019. J Antibiot 37:1054–1065

    Article  Google Scholar 

  • Gordee RS, Zeckner DJ, Howard LC, Alborn WE Jr, Debono M (1988): AntiCandida activity of LY121019, a novel semisynthetic polypeptide antifungal antibiotic. Ann NY Acad Sci 544:294–309

    Article  Google Scholar 

  • Graybill JR (1989): New antifungal agents. Eur J Clin Microbiol Infect Dis 8:402–412

    Article  Google Scholar 

  • Hall GS, Myles C, Pratt KJ, Washington JA (1988): Cilofungin (LY121019), an antifungal agent with specific activity against Candida albicans and Candida tropicalis. Antimicrob Agent Chemother 32:1331–1335

    Article  Google Scholar 

  • Hanson LH, Stevens D (1989): Evaluation of cilofungin, a lipopeptide antifungal agent, in vitro against fungi isolated from clinical specimens. Antimicrob Agent Chemother 33:1391–1392

    Article  Google Scholar 

  • Heiniger U (1983): UDP-glucose: 1,3-glucan synthase in potato tubers: solubilization and activation by lipid. Plant Sci Lett 32:35–41

    Article  Google Scholar 

  • Hobbs M, Perfect J, Durak D (1988): Evaluation of in vitro antifungal activity of LY121019. Eur J Clin Microbiol 7:80–81

    Article  Google Scholar 

  • Hrmova M, Taft CS, Selitrennikoff CP (1989): (1,3)-β-D-Glucan synthase of Neurospora crassa: partial purification and characterization of solubilized enzyme activity. Exp Mycol 13:129–139

    Article  Google Scholar 

  • Kang MS, Cabib E (1986): Regulation of fungal cell wall growth: A guanine nucleotide-binding, proteinaceous component required for activity of (1–3)-βD-glucan synthase. Proc Nat Acad Sci USA 83:5808–5812

    Article  Google Scholar 

  • Keim GR, Sibley P, Yoon Y, Kulwaza J, Zaisi I, Miller M, Poutsiaka J (1976): Comparative toxicological studies of amphotericin B methyl ester and amphotericin B in mice, rats, and dogs. Antimicrob Agent Chemother 10:687–691

    Article  Google Scholar 

  • Keller-Juslen C, Kuhn M, Loosli HR, Petcher TJ, Weber HP, von Wartburg A (1976): Struktur des cyclopeptid-antibiotikums SL 7801 (= echinocandin B). Tetrahedron Lett 4147–4150

    Google Scholar 

  • Larriba G, Morales M, Ruiz-Herrera J (1981): Biosynthesis of β-glucan microfibrils by cell free extracts from Saccharomyces cerevisiae. J Gen Microbiol 124:375–383

    Google Scholar 

  • Leal F, Ruiz-Herrera J, Villanueva JR, Larriba G (1984): An examination of factors affecting instability of Saccharomyces cerevisiae glucan synthase in cell free extract. Arch Microbiol 137:209–214

    Article  Google Scholar 

  • Lopez-Romero E, Ruiz-Herrera J (1977): Biosynthesis of β-glucans by cell-free extracts from Saccharomyces cerevisiae. Biochim Biophys Acta 500:372–384

    Article  Google Scholar 

  • Lopez-Romero E, Ruiz-Herrera J (1978): Properties of β-glucan synthase from Saccharomyces cerevisiae. Antonie van Leeuwenhoek 44:329–339

    Article  Google Scholar 

  • Matsumoto Y, Matsuda S, Tegoshi T (1989): Yeast glucan in the cyst wall of Pneumocystis carnii. J Protozool 36(Suppl):21S-22S

    Google Scholar 

  • Mizoguchi J, Saito T, Mizuno K, Hayano K (1977): On the mode of action of a new antifungal antibiotic, aculeacin A: Inhibition of cell wall synthesis in Saccharomyces cerevisiae. J Antibiot 30:308–313

    Article  Google Scholar 

  • Mol PC, Vermeulen CA, Wessels JGH (1988): Glucan-glucosamineoglycan linkages in fungal walls. Acta Bot Neerl 37:17–21

    Google Scholar 

  • Orlean PAB (1982): (1,3)-β-D-Glucan synthase from budding and filamentous cultures of the dimorphic fungus Candida albicans. Eur J Clin Microbiol Infect Dis 127:397–408

    Google Scholar 

  • Patterson TF, Andriole VT (1989): Current concepts in cryptococcosis. Eur J Clin Microbiol Infect Dis 8:457–465

    Article  Google Scholar 

  • Pfaller M, Gordee R, Gerarden T, Yu M, Wenzel R (1989): Fungicidal activity of cilofungin (LY121019) alone and in combination with anticapsin or other fungal agents. Eur J Clin Microbiol Infect Dis 8:564–567

    Article  Google Scholar 

  • Quigley DR, Selitrennikoff CP (1984): β-(1,3) Glucan synthase of Neurospora crassa: Solubilization and partial characterization. Exp Mycol 8:202–214

    Article  Google Scholar 

  • Roy K, Mukhopadhyay T, Reddy GCS, Desikan KR, Ganguli BN (1987): Mulundocandin: A new lipopeptide antibiotic I. Taxonomy, fermentation, isolation, and characterization. J Antibiot 40:275–280

    Article  Google Scholar 

  • San-Blas G, San-Blas F (1982): Effect of detergents on membrane associated glucan synthase from Paracoccidioides brasiliensis. J Bacteriol 152:563–566

    Google Scholar 

  • Satoi S, Yagi A, Asano K, Mizuno K, Watanabe T (1977): Studies on aculeacin A. II. Isolation and characterization of aculeacin B, C, D, E, F and G. J Antibiot 30:303–307

    Article  Google Scholar 

  • Sawistowska-Schroder ET, Kerridge D, Perry H (1984): Echinocandin inhibition of 1,3-β-D-glucan synthase from Candida albicans. FEBS Lett 173:134–138

    Article  Google Scholar 

  • Schmatz DM, Romancheck MA, Pittarelli A, Schwartz RE, Fromtling RA, Nollstadt KH, Vanmiddlesworth FL, Wilson KE, Turner MJ (1990): Treatment of Pneumocystis carinii pneumonia with 1,3-β-glucan synthesis inhibitors. Proc Natl Acad Sci USA 87:5950–5954

    Article  Google Scholar 

  • Schwartz RE, Giacobbe RA, Bland JA, Monaghan RL (1989): L-671,329, a new antifungal agent. I. Fermentation and isolation. J Antibiot 42:163–167

    Article  Google Scholar 

  • Shematek EM, Cabib E (1980): Biosynthesis of the yeast cell wall. II. Regulation of β-(1,3) glucan synthase by ATP and GTP. J Biol Chem 255:895–902

    Google Scholar 

  • Shematek EM, Braatz JA, Cabib E (1980): Biosynthesis of the yeast cell wall. I. Preparation and properties of β-(1,3) glucan synthase. J Biol Chem 255:888–894

    Google Scholar 

  • Silverman SJ, Sburlata A, Slater ML, Cabib E (1988): Chitin synthase 2 is essential for septum formation and cell division in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 85:4735–4739

    Article  Google Scholar 

  • Sullivan PA, Yin CY, Molloy C, Templeton MD, Shepherd MG (1983): An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Can J Microbiol 29:1514–1525

    Article  Google Scholar 

  • Szaniszlo PJ, Kang MS, Cabib E (1985): Stimulation of β(1–3) glucan synthase of various fungi by nucleoside triphosphate: Generalized regulatory mechanism for cell wall biosynthesis. J Bacteriol 161:1188–1194

    Google Scholar 

  • Taft CS, Selitrennikoff CP (1990): Cilofungin inhibition of (1–3)-β-glucan synthase: the lipophilic side chain is essential for inhibition of enzyme activity. J Antibiot 43:433–437

    Article  Google Scholar 

  • Taft CS, Selitrennikoff CP (1988a): LY121019 inhibits Neurospora crassa growth and (1–3)-β-D-glucan synthase. J Antibiot 41:697–701

    Article  Google Scholar 

  • Taft CS, Selitrennikoff CP (1988b): Cilofungin (LY121019) inhibits Candia albicans β(1–3)-D-glucan synthase activity. Antimicrob Agents Chemother 32:1901–1903

    Article  Google Scholar 

  • Tang J, Parr TR Jr (1990): Interaction of Candida albicans (1–3)-β-D-glucan synthase with Echinocandin B and Cilofungin (LY 121019). 90th American Society for Microbiology, Anaheim, CA. May 1990, Abstract # F110

    Google Scholar 

  • Tang J, Parr TR Jr (1991): W-1 solubilization and kinetics of inhibition by cilofungin of Candida albicans (1,3)-β-D-glucan synthase. Antimicrob Agent Chemother 35:99–103

    Article  Google Scholar 

  • Tscherter H, Dreyfuss MM (Sandoz S. A.): Antibiotics from a Cryptosporiopsis species and their therapeutic use; Sandoz S. A., assignee Belg Patent 889, 955; Feb. 15, 1982

    Google Scholar 

  • Wichmann CF, Liesch KM, Schwartz RE (1989): L-671,329, a new antifungal agent. H. Structure determination. J Antibiot 42:168–173

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gordee, R.S., Debono, M., Parr, T.R. (1992). The Fungal Cell Wall — A Target For Lipopeptide Antifungal Agents. In: Fernandes, P.B. (eds) New Approaches for Antifungal Drugs. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6729-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6729-9_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6731-2

  • Online ISBN: 978-1-4899-6729-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics