Skip to main content

Organization of Catecholaminergic Amacrine Cells in the Rhesus Monkey Retina

  • Chapter
The Visual System from Genesis to Maturity

Abstract

Dopamine-containing amacrine cells were among the first of many different neurotransmitter phenotypes identified in the macaque retina owing to their blue-green, formaldehyde-induced fluorescence (Ehinger, 1966; Laties and Jacobowitz, 1966). They are neurons with cell bodies in the innermost row of the inner nuclear layer, processes that arborize in the outermost stratum of the inner plexiform layer, and fine, radially oriented fibers that course in the inner nuclear layer (see Figure 10.1A), and have been well-characterized with regard to their morphology (Nguyen-Legros et al., 1984), distribution across the retina (Mariani et al., 1984), and synaptic organization (Hokoç and Mariani, 1987). Although the appearance of dopaminergic neurons varies somewhat between species (Ehinger, 1982), there was, with the exception of perhaps two or three vertebrate species (Hadjiconstantinou et al., 1984; Keyser et al., 1987), little evidence for morphological variability among this transmitter phenotype in a single retina, including the rhesus monkey’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dearry A, Burnside B (1986): Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: 1. Induction of cone contraction is mediated by D2 receptors. J Neurochem 46:1006–1021.

    Article  Google Scholar 

  • Dowling JE, Boycott BB (1966): Organization of the primate retina: Electron microscopy. Proc R Soc LonV (Biol) 166:80–111.

    Article  Google Scholar 

  • Dowling JE, Ehinger B (1975): Synaptic organization of the amine-containing interplexiform cells of the goldfish and cebus monkey retinas. Science 188:270–273.

    Article  Google Scholar 

  • Ehinger B (1966): Adrenergic nerves to the eye and to related structures in man and in the cynomolgus monkey (Macaca irus). Invest Ophthalmol 5:42–52.

    Google Scholar 

  • Ehinger B (1982): Neurotransmitter systems in the retina. Retina 2:305–321.

    Article  Google Scholar 

  • Hadjiconstantinou M, Mariani AP, Panula P, Joh TH, Neff NH (1984): Immunohistochemical evidence for epinephrine-containing retinal amacrine cells. Neuroscience 13:547–551.

    Article  Google Scholar 

  • Hokoç JN, Mariani AP (1987): Tyrosine hydroxylase immunoreactivity in the rhesus monkey retina reveals synapses from bipolar cells to dopaminergic amacrine cells. J Neurosci 7:2785–2793.

    Google Scholar 

  • Iuvone PM (1988): Dopamine: A light-adaptive modulator of melatonin synthesis in the frog retina. In: Dopaminergic Mechanisms in Vision, Bodis-Wollner I, Piccolino M, eds. New York: Liss.

    Google Scholar 

  • Iuvone PM, Tigges M, Fernandes A, Tigges J (1989): Dopamine synthesis and metabolism in rhesus monkey retina: Development, aging, and the effects of monocular deprivation. Visual Neurosci 2:465–471.

    Article  Google Scholar 

  • Keyser KT, Karten HJ, Katz B, Bohn MC (1987): Catecholaminergic horizontal and amacrine cells in the ferret retina. J Neurosci 7:3996–4004.

    Google Scholar 

  • Kolb H, Famiglietti EV Jr (1983): Rod and cone pathways in the inner plexiform layer of cat retina. Science 186:47–49.

    Article  Google Scholar 

  • Laties AM, Jacobowitz D (1966): A comparative study of the autonomie innervation of the eye in monkey, cat and rabbit. Anat Rec 156:383–396.

    Article  Google Scholar 

  • Mariani AP (1983): Giant bistratified bipolar cells in monkey retina. Anat Rec 206:215–220.

    Article  Google Scholar 

  • Mariani AP, Hokoç JN (1988): Two types of tyrosine hydroxylase immunoreactive amacrine cell in the rhesus monkey retina. J Comp Neurol 276:81–91.

    Article  Google Scholar 

  • Mariani AP, Kolb H, Nelson R (1984): Dopamine-containing amacrine cells of rhesus monkey retina parallel rods in spatial distribution. Brain Res 322:1–7.

    Article  Google Scholar 

  • McMahon DG, Knapp AG, Dowling JE (1989): Horizontal cell gap junctions: Single-channel conductance and modulation by dopamine. Proc Nat Acad Sci, USA 86:7639–7643.

    Article  Google Scholar 

  • Nguyen-Legros J, Botteri C, Phuc LH, Vigny A, Gay M (1984): Morphology of primate’s dopaminergic amacrine cells as revealed by TH-like immunoreactivity on retinal flat-mounts. Brain Res 295:145–153.

    Article  Google Scholar 

  • Nguyen-Legros J, Versaux-Botteri C, Vigny A, Raux N (1985): Tyrosine hydroxylase immunohistochemistry fails to demonstrate dopaminergic interplexiform cells in the turtle retina. Brain Res 339:323–328.

    Article  Google Scholar 

  • Piccolino M, Neyton J, Gerschenfeld HM (1984): Decrease of gap junction permeability induced by cyclic adenosine 3′,5′-monophosphate in horizontal cells of the turtle retina. Proc Nat Acad Sci USA 19:3611–3615.

    Google Scholar 

  • Stell WK, Walker SE, Chohan KS, Ball AK (1984): The goldfish nervus terminalis: A luteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway. Proc Nat Acad Sci USA 81:940–944.

    Article  Google Scholar 

  • Tauchi M, Madigan NK, Masland RH (1990): Shapes and distributions of the catecholamine-accumulating neurons in the rabbit retina. J Comp Neurol 293:178–189.

    Article  Google Scholar 

  • Teitleman G, Gershon MD, Rothman TP, Joh T-H, Reis DJ (1981): Proliferation and distribution of cells that transiently express a catecholaminergic phenotype during development in mice and rats. Dev Biol 86:348–355.

    Article  Google Scholar 

  • Teranishi T, Negishi K, Kato S (1983): Dopamine modulates S-potential and dye-coupling between external horizontal cells in carp retina. Nature 301:243–246.

    Article  Google Scholar 

  • Wang H-H, Cuenca N, Kolb H (1990): Development of morphological types and distribution patterns of amacrine cells immunoreactive to tyrosine hydroxylase in the cat retina. Visual Neurosci 4:159–175.

    Article  Google Scholar 

  • Yazulla S, Zucker CL (1988): Synaptic organization of dopaminergic interplexiform cells in the goldfish retina. Visual Neurosci 1:13–29.

    Article  Google Scholar 

  • Zucker CL, Dowling JE (1987): Centrifugal fibers synapse on dopaminergic interplexiform cells in teleost retina. Nature 330:166–168.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mariani, A.P., Hokoç, J.N. (1992). Organization of Catecholaminergic Amacrine Cells in the Rhesus Monkey Retina. In: Lent, R. (eds) The Visual System from Genesis to Maturity. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6726-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6726-8_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6728-2

  • Online ISBN: 978-1-4899-6726-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics