Skip to main content

Structural Organization of Cingulate Cortex: Areas, Neurons, and Somatodendritic Transmitter Receptors

  • Chapter

Abstract

Although cingulate cortex is one of the largest components of the limbic system, it has remained an enigma to neuroscientists over the past century. This is because the structure of cingulate cortex undergoes complex transitions and many of its connections do not conform to the “rules” of neocortical organization. Moreover, it is difficult to access the medial surface of the cerebral cortex, and so cingulate cortex has remained largely silent in functional and neurological assessments. Its role in responses to noxious stimuli, movement, vocalization, motivation, and learning and memory only now is becoming apparent. Positron emission tomography studies of cerebral blood flow and metabolism are now exposing cingulate cortex to clinical assessments that were not previously feasible with electroencephalo-graphic techniques. These studies show important roles for cingulate cortex in attention and responses to painful stimuli, and they have confirmed in vitro findings of high opioid receptor binding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey WR, Meyer M (1952): An experimental study of hippocampal afferent pathways from prefrontal and cingulate areas in the monkey. J Anat 86:58–74

    Google Scholar 

  • Andersen P, Silfvenius H, Sundberg SH, Sveen O (1980): A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea-pig hippocampal slices in vitro. J. Physiol. (London) 307:273–299

    Google Scholar 

  • Azmitia EC, Segal M (1978): An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–668

    Google Scholar 

  • Baleydier C, Mauguière F (1980): The duality of the cingulate gyrus in monkey: Neuroanatom-ical study and functional hypothesis. Brain 103:525–554

    Google Scholar 

  • Barker JL, Dufy B, Harrington JW, Harrison NL, MacDermott AB, MacDonald JF, Owen DG, Vicini S (1987): Signals transduced by gamma-aminobutyric acid in cultured central nervous system neurons and thyrotropin releasing hormone in clonal pituitary cells. Ann NY Acad Sci 494:1–38

    Google Scholar 

  • Berger TW, Milner TA, Swanson GW, Lynch GS, Thompson RF (1980): Reciprocal anatomical connections between anterior thalamus and cingulate-retrosplenial cortex in the rabbit. Brain Res 201:411–417

    Google Scholar 

  • Blümcke I, Hof PR, Morrison JH, Celio MR (1990): Distribution of parvalbumin immuno-reactivity in the visual cortex of Old World monkeys and humans. J Comp Neurol 301:417–432

    Google Scholar 

  • Bormann J (1988): Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neu-rosci 11:112–116

    Google Scholar 

  • Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull M (1980): (—)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature (London) 283:92–94

    Google Scholar 

  • Braak H (1976): A primitive gigantocellular field buried in the depth of the cingulate sulcus of the human brain. Brain Res 109:219–233

    Google Scholar 

  • Braak H (1979a): Pigment architecture of the human telencephalic cortex. IV. Regio retro-splenialis. Cell Tissue Res 204:431–440

    Google Scholar 

  • Braak H (1979b): Pigment architecture of the human telencephalic cortex. V. Regio antero-genualis. Cell Tissue Res 204:441–451

    Google Scholar 

  • Brodmann K (1909): Vergleichende Lokalisa-tionslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth

    Google Scholar 

  • Brun A, Englund E (1981): Regional pattern of degeneration in Alzheimer’s disease: Neuronal loss and histopathological grading. Histopa-thology 5:549–564

    Google Scholar 

  • Buckley NJ, Bonner TI, Brann MR (1988): Localization of a family of muscarinic receptor mRNAs in rat brain. J. Neurosci. 8:4646–4652

    Google Scholar 

  • Cauller LJ, Connors BW (1992): Functions of very distal dendrites: Experimental and computational studies of Layer I synapses on neocor-tical pyramidal cells. In: Single Neuron Computation, McKenna T, Davis J, Zornetzer SF, eds, New York: Academic Press, pp 199–229

    Google Scholar 

  • Chagnac-Amital Y, Luhmann HJ, Prince DA (1990): Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features. J Comp Neurol 296:598–613

    Google Scholar 

  • Chui HC, Teng EL, Henderson VW, Moy AC (1985): Clinical subtypes of dementia of the Alzheimer type. Neurology 35:1544–1550

    Google Scholar 

  • Connors BW, Gutnick MJ, Prince DA (1982): Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48:1302–1320

    Google Scholar 

  • Crino PB, Vogt BA, Volicer L, Wiley RG (1990): Cellular localization of serotonin 1A, IB and uptake sites in cingulate cortex of the rat. J Pharmacol Exp Ther 252:651–656

    Google Scholar 

  • Curcio CA, Kemper T (1984): Nucleus raphe dorsalis in dementia of the Alzheimer type: Neurofibrillary changes and neuronal packing density. JNeuropathol Exp Neurol 43:359–368

    Google Scholar 

  • DeFelipe J, Jones EG (1988): Cajal on the Cerebral Cortex. New York: Oxford University Press

    Google Scholar 

  • Domesick VB (1970): The fasciculus cinguli in the rat. Brain Res 20:19–32

    Google Scholar 

  • Dum RP, Strick PL (1991): The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11:667–689

    Google Scholar 

  • Ehlert FJ, Kokka N, Fairhurst AS (1980): Altered [3H]quinuclidinyl benzilate binding in the striatum of rats following chronic Cholinesterase inhibition with diisopropylfluorophos-phate. Mol Pharmacol 17:24–30

    Google Scholar 

  • Fallon JH, Leslie FM (1986): Distribution of dynorphin and enkephalin peptides in the rat brain. J Comp Neurol 249:293–336

    Google Scholar 

  • Feldman ML (1984): Morphology of the neocortical pyramidal neuron. In: Cerebral Cortex, Peters A, Jones EG, eds. New York: Plenum, Vol 1, pp 123–200

    Google Scholar 

  • Feldman ML, Peters A (1974): A study of barrels and pyramidal dendritic clusters in the cerebral cortex. Brain Res 77:55–76

    Google Scholar 

  • Fleischhauer K, Petsch H, Wittkowski W (1972): Vertical bundles of dendrites in the neocortex. Z Anat Entwicklungsgesch 136:213–223

    Google Scholar 

  • Flynn DD, Weinstein DA, Mash DC (1992): Loss of high affinity agonist binding to Ml receptors in Alzheimer’s disease: Implications for the failure of cholinergic replacement therapies. Ann Neurol 29:256–262

    Google Scholar 

  • Foltz EL, White LE (1962): Pain “relief by frontal cingulumotomy. J Neurosurg 19:89–100

    Google Scholar 

  • Foltz EL, White LE (1968): The role of rostral cingulumotomy in “pain” relief. Int J Neurol 6:353–373

    Google Scholar 

  • Frey KA, Zubieta JK (1991): Effects of DFP treatment of m3 receptors: An autoradiographic analysis. Neurosci Abstr 17:586

    Google Scholar 

  • Friedman WJ, Ernfors P, Persson H (1991): Transient and persistent expression of NT-3/HDNF mRNA in the rat brain during postnatal development. J Neurosci 11:1577–1584

    Google Scholar 

  • Fujita Y (1979): Evidence for the existence of inhibitory postsynaptic potentials in dendrites and their functional significance in hippo-campal pyramidal cells of adult rabbits. Brain Res 175:59–69

    Google Scholar 

  • Gabriel M, Foster K, Orona E (1980a): Interaction of laminae of the cingulate cortex with the anteroventral thalamus during behavioral learning. Science 298:1050–1052

    Google Scholar 

  • Gabriel M, Foster K, Orona E, Saltwick SE, Stanton M (1980b): Neuronal activity of cingulate cortex, anteroventral thalamus and hippo-campal formation in discriminative conditioning: Encoding and extraction of the significance of conditional stimuli. Prog Psy-chobiol Physiol Psychol 9:125–231

    Google Scholar 

  • Gabriel M, Vogt BA, Kubota Y, Poremba A, Kang E (1991): Training-stage related neuronal plasticity in limbic thalamus and cingulate cortex during learning: A possible key to mnemonic retrieval. Behav Brain Res, 46:175–185

    Google Scholar 

  • Goldman-Rakic PS, Selemon LD, Schwartz ML (1984): Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12:719–743

    Google Scholar 

  • Harkmark W, Mellgren Sl, Srebro B (1975): Acetylcholinesterase histochemistry of the septal region in rat and human: Distribution of enzyme activity. Brain Res 95:281–289

    Google Scholar 

  • Hendry SHC, Jones EG, Emson PC, Lawson DEM, Heizmann CW, Streit P (1989): Two classes of cortical GABA neurons defined by differential calcium binding protein immuno-reactivities. Exp Brain Res 76:467–472

    Google Scholar 

  • Herrmann C, Schulz E (1978): Quantitative Untersuchungen an Sternzellen im Bereich der cingulären Rinde der Ratte. J Hirnforsch 19:519–531

    Google Scholar 

  • Hotchkiss AJ, Gibb JW (1980): Long-term effects of multiple doses of methamphetamine and tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. J Pharmacol Exp Ther 214:257–262

    Google Scholar 

  • Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1985): Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: A study of cholinergic neurons and synapses. J Comp Neurol 234:17–34

    Google Scholar 

  • Houser CR, Hendry SHC, Jones EG, Vaughn JE (1983): Morphological diversity of immunocy-tochemically identified GABA neurons in the monkey sensory-motor cortex. J Neurocytol 12:617–638

    Google Scholar 

  • Insausti R, Amaral DG, Cowan WM (1987): The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 264:356–395

    Google Scholar 

  • Iwahori N, Mizuno N (1981a): A Golgi study on the neuronal organization of the interhemis-pheric cortex in the mouse. I. Projection neurons. Anat Embryol 161:465–481

    Google Scholar 

  • Iwahori N, Mizuno N (1981b): A Golgi study on the neuronal organization of the interhemi-spheric cortex in the mouse. II. Intrinsic neurons. Anat Embyol 161:483–498

    Google Scholar 

  • Jacobowitz DM, Winsky L (1991): Immunocytochemical localization of calretinin in the fore-brain of the rat. J Comp Neurol 304:198–218

    Google Scholar 

  • James WM, Klein WL (1988): Localization of acetylcholine receptors on isolated CNS neurons: Cellular and subcellular differentiation. J Neurosci 8:4225–4238

    Google Scholar 

  • Kalaria RN, Andorn AC, Tabaton M, White-house PJ, Harik SI, Unnerstall RJ (1989): Adrenergic receptors in aging and Alzheimer’s disease: Increased ß 2-receptors in prefrontal cortex and hippocampus. J Neurochem 53:1772–1781

    Google Scholar 

  • Krettek JE, Price JL (1977): The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–192

    Google Scholar 

  • Krieg WJS (1946): Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas. J Comp Neurol 84:277–323

    Google Scholar 

  • Kromer Vogt LJ, Hyman BT, Van Hoesen GW, Damasio AR (1990): Pathological alterations in the amygdala in Alzheimer’s disease. Neuroscience 37:377–385

    Google Scholar 

  • Kuhar MJ, Pert CB, Snyder SH (1973): Regional distribution of opiate receptor binding in monkey and human brain. Nature (London) 245:447–450

    Google Scholar 

  • Leung LS (1978): Hippocampal CA1 region—demonstration of antidromic dendritic spike and dendritic inhibition. Brain Res 158:219–222

    Google Scholar 

  • Liles WC, Hunter DD, Meier KE, Nathanson NM (1986): Activation of protein kinase C induces rapid internalization and subsequent degradation of muscarinic acetylcholine receptors in neuroblastoma cells. J Biol Chem 261:5307–5313

    Google Scholar 

  • Liles WC, Nathanson NM (1987): Regulation of muscarinic acetylcholine receptor number in cultured neuronal cells by chronic membrane depolarization. J Neurosci 7:2556–2563

    Google Scholar 

  • Lorente de Nó R (1933): Studies on the structure of the cerebral cortex. I. The area entorhinalis. J Psychol Neurol 45:381–438

    Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987): Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7:2445–2464

    Google Scholar 

  • Marino R (1976): The anterior cerebral artery: I. Anatomo-radiological study of its cortical territories. Surg Neurol 5:81–87

    Google Scholar 

  • Masukawa LM, Prince DA (1984): Synaptic control of excitability in isolated dendrites of hip-pocampal neurons. J Neurosci 4:217–227

    Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1991): Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462

    Google Scholar 

  • Maura G, Raiteri M (1986): Cholinergic terminals in rat hippocampus possess 5-HT1B receptors mediating inhibition of acetylcholine release. Eur J Pharmacol 129:333–337

    Google Scholar 

  • Mayeux R, Stern Y, Spanton S (1985): Heterogeneity in dementia of the Alzheimer type: Evidence of subtypes. Neurology 35:453–461

    Google Scholar 

  • McCabe RT, Gibb JW, Wamsley JK, Hanson GR (1987): Autoradiographic analysis of muscarinic cholinergic and serotonergic receptor alterations following methamphetamine treatment. Brain Res Bull 19:551–557

    Google Scholar 

  • McCormick DA, Prince DA (1985): Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proc Natl Acad Sci USA 82:6344–6348

    Google Scholar 

  • McKinney M, Coyle JT (1982): Regulation of neocortical muscarinic receptors: Effects of drug treatment and lesions. J Neurosci 2:97–105

    Google Scholar 

  • McLean S, Rothman RB, Herkenham M (1986): Autoradiographic localization of mu and delta opiate receptors in the forebrain of the rat. Brain Res 378:49–60

    Google Scholar 

  • Meinecke DL, Peters A (1987): GABA immuno-reactive neurons in rat visual cortex. J Comp Neurol 261:388–404

    Google Scholar 

  • Morris AA, Peck CM (1955): Roentgenographic study of the variations in the normal anterior cerebral artery. Am J Roetgenol Radium Ther Nucl Med 74:818–826

    Google Scholar 

  • Mountcastle VB (1957): Modality and topographic properties of single neurons of cats somatic sensory cortex. J Neurophysiol 20:408–434

    Google Scholar 

  • Mountjoy CQ, Roth M, Evans NJR, Evans HM (1983): Cortical neuronal counts in normal elderly, controls and demented patients. Neu-robiol Aging 4:1–11

    Google Scholar 

  • Mugnaini E, Oertel WH (1985): An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immu-nohistochemistry. In: Handbook of Chemical Neuroanatomy, Björklund A, Hökfelt T, eds. Amsterdam: Elsevier, Vol 4, pp 436–608

    Google Scholar 

  • Musil SY, Olson CR (1988): Organization of cortical and subcortical projections to anterior cingulate cortex in the cat. J Comp Neurol 272:203–218

    Google Scholar 

  • Nauta WJH (1964): Some efferent connections of the prefrontal cortex in the monkey. In: The Frontal Granular Cortex and Behavior, Warren JM, Akert K, eds. New York: McGraw-Hill, pp 397–409

    Google Scholar 

  • Nelson DL, Herbert A, Bourgoin S, Glowinski J, Hanson M (1978): Characteristics of central 5-HT receptors and their adaptive changes following intracerebral 5, 7-dihydroxytryptamine administration in the rat. Mol Pharmacol 14:983–995

    Google Scholar 

  • Oderfeld-Nowak B, Siman SR, Chang L, Aprison MH (1980): Interactions of the cholinergic and serotonergic systems. Gen Pharmacol 11:37–45

    Google Scholar 

  • Offord S J, Ordway GA, Frazer A (1988): Application of [125I]iodocyanopindolol to measure 5-hydroxytrypatmine-1B receptors in the brain of the rat. J Pharmacol Exp Ther 244:144–153

    Google Scholar 

  • Olsen RW, Tobin AJ (1990): Molecular biology of GABAA receptors. FASEB J 4:1469–1480

    Google Scholar 

  • Ono M, Kubik S, Abernathey CD (1990): Atlas of the Cerebral Sulci. Stuttgart and New York: Thieme

    Google Scholar 

  • Penney JB Jr, Pan HS, Young AB, Frey KA, Dauth GW (1981): Quantitative autoradiography of [3H]muscimol binding in rat brain. Science 214:1036–1038

    Google Scholar 

  • Perlmutter D, Rhoton AL (1976): Microsurgical anatomy of anterior cerebral-anterior communicating-recurrent artery complex. Surg Forum 27:464–465

    Google Scholar 

  • Perlmutter D, Rhoton AL (1978): Microsurgical anatomy of the distal anterior cerebral artery. J Neurosurg 49:204–228

    Google Scholar 

  • Peters A, Jones EG, eds (1984): Cerebral Cortex, Vol 1. New York: Plenum

    Google Scholar 

  • Peters A, Proskauer CC, Ribak CE (1982): Chandelier cells in rat visual cortex. J Comp Neurol 206:397–416

    Google Scholar 

  • Peters A, Regidor J (1981): A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex. J Comp Neurol 203:685–716

    Google Scholar 

  • Price DL, Whitehouse PJ, Struble RG, Clark AW, Coyle JT, DeLong MR, Hedreen JC (1982): Basal forebrain cholinergic systems in Alzheimer’s disease and related dementias. Neurosci Comment 1:84–92

    Google Scholar 

  • Price GW, Blackburn TP, Hudson AL, Bowery NG (1984): Presynaptic GABAB sites in the interpeduncular nucleus. Neuropharmacology 23:861–862

    Google Scholar 

  • Ramon y Cajal S (1901–1902/1955): Studies of the Cerebral Cortex (Limbic Structures), Kraft LM, transi. Chicago: Lloyd-Luke, London/ Year Book

    Google Scholar 

  • Ramon y Cajal S (1911): Histologie du système nerveux de l’homme et des vertébrés, Vol II. Paris: Maloine

    Google Scholar 

  • Ramón y Cajal S (1922): Estrudios sobre la Fina Estructura de la Corteza Regional de los Roe-dores. I. Corteza suboccipital (Retrosplenial de Brodmann). Trab Lab Biol Univ Madrid 20:1–30

    Google Scholar 

  • Robertson RT, Kaitz SS (1981): Thalamic connections with limbic cortex. I. Thalamocortical projections. J Comp Neurol 195:501–525

    Google Scholar 

  • Rose JE, Woolsey CN (1948): Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat. J Comp Neurol 89:279–340

    Google Scholar 

  • Rose M (1927): Gyrus limbicus anterior und Regio retrosplenialis (Cortex holoprotoptychos quinquestratificatus) Vergleichende Architektonik bei Tier und mensch. J Psychol Neurol 43:65–173

    Google Scholar 

  • Rose M (1931): Cytoarchitektonischer Atlas der Grosshirnrinde des Kaninchens. J Psychol Neurol 43:353–440

    Google Scholar 

  • Russell RG, Carson VG, Booth RA, DJ Jenden DJ (1981): Mechanisms of tolerance to the anticholinesterase, DFP: Acetylcholine levels and dynamics in the rat brain. Neuropharmacology 20:1197–1201

    Google Scholar 

  • Sanides F (1970): Functional architecture of motor and sensory cortices in primates in the light of a new concept in neocortex evolution. In: The Primate Brain, Noback CR, Montagna W, eds. New York: Appleton-Century-Crofts, pp 137–208

    Google Scholar 

  • Sanides F, Sanides D (1972): The “extraverted neurons” of the mammalian cerebral cortex. Z Anat Entwicklungs gesch 136:272–293

    Google Scholar 

  • Sar M, Stumpf WE, Miller RJ, Chang K-J, Cuatrecasas P (1978): Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol 182:17–38

    Google Scholar 

  • Sarkissov SA, Filimonoff IN, Kononowa EP, Preobraschenskaja IS, and Kukuew LA (1955): Atlas of the Cytoarchitectonics of the Human Cerebral Cortex. Medgiz, Moscow

    Google Scholar 

  • Schulz E, Schönheit B (1974); Neurohistologische Untersuchungen zur Neuronenstruktur der Regio limbica anterior der Ratte. J Hirnforsch 15:469–490

    Google Scholar 

  • Seltzer B, Sherwin I (1983): A comparison of clinical features in early and late onset primary degenerative dementia: One entity or two? Arch Neurol (Chicago) 40:143–146

    Google Scholar 

  • Siman RG, Klein WL (1979): Cholinergic activity regulates muscarinic receptors in central nervous system cultures. Proc Natl Acad Sci USA 76:4141–4145

    Google Scholar 

  • Siman RG, Klein WL (1981): Specificity of muscarinic acetylcholine receptor regulation by receptor activity. J Neurochem 37:1099–1108

    Google Scholar 

  • Smith GE (1897): The morphology of the indu-sium and striae Lancisii. Anat Anz 13:23–27

    Google Scholar 

  • Somogyi P (1977): A specific “axo-axonal” inter-neuron in the visual cortex of the rat. Brain Res 136:345–350

    Google Scholar 

  • Sripanidkulchai K, Sripanidkulchai B, Wyss JM (1984): The cortical projection of the basolat-eral amygdaloid nucleus in the rat: A retrograde fluorescent dye study. J Comp Neurol 229:419–431

    Google Scholar 

  • Sripanidkulchai K, Wyss JM (1987): The laminar organization of efferent neuronal cell bodies in the retrosplenial granular cortex. Brain Res 406:255–269

    Google Scholar 

  • Taylor JE, El-Fakanany E, Richelson E (1979): Long-term regulation of muscarinic acetylcholine receptors on cultured nerve cells. Life Sci 25:2181–2187

    Google Scholar 

  • Tomlinson BE, Irving D, Blessed G (1981): Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J Neurol Sci 49:419–428

    Google Scholar 

  • Townes-Anderson E, Vogt BA (1989): Distribution of muscarinic acetylcholine receptors on processes of isolated retinal cells. J Comp Neurol 290:369–383

    Google Scholar 

  • Tribollet E, Charpak S, Schmidt A, Dubois-Dauphin M, Dreifuss JJ (1989): Appearance and transient expression of oxytocin receptors in fetal, infant, and peripubertal rat brain studied by autoradiography and electrophysiol-ogy. J Neurosci 9:1764–1773

    Google Scholar 

  • Unnerstall JR, Kuhar MJ, Niehoff DL, Palacios JM (1981): Benzodiazepine receptors are coupled to a subpopulation of gamma-amino-butyric acid (GABA) receptors: Evidence from a quantitative autoradiographic study. J Pharmacol Exp Ther 218:797–804

    Google Scholar 

  • Valverde F (1965): Studies on the Piriform Lobe. Cambridge, MA: Harvard University Press

    Google Scholar 

  • Van Hoesen GW, Damasio AR (1987): Neural correlates of cognitive impairment in Alzheimer’s disease. In: Handbook of Physiology, Plum F, ed. New York: Waverly Press, Vol 5, pp 871–898

    Google Scholar 

  • Vogt BA (1976): Retrosplenial cortex in the rhesus monkey: A cytoarchitectonic and Golgi study. J Comp Neurol 169:63–98

    Google Scholar 

  • Vogt BA (1985): Cingulate cortex. In: Cerebral Cortex, Peters A, Jones EG, eds. New York: Plenum, pp 89–149

    Google Scholar 

  • Vogt BA (1991): The role of layer I in cortical function. In: Cerebral Cortex, Peters A, Jones EG, eds. New York: Plenum, Vol 9, pp 49–80

    Google Scholar 

  • Vogt BA, Burns DL (1988): Experimental localization of muscarinic receptor subtypes to cingulate cortical Afferents and neurons. J Neurosci 8:643–652

    Google Scholar 

  • Vogt BA, Crino PB, Jensen EL (1992): Multiple heteroreceptors on limbic thalamic axons: M2 acetylcholine, serotonin1B, beta2 adrenoceptors, mu opioid, neurotensin. Synapse 10:44–53

    Google Scholar 

  • Vogt BA, Crino PB, Volker L (1991a): Laminar alterations in gamma-aminobutyric acidA, muscarinic and beta adrenoceptors and neuron degeneration in cingulate cortex in Alzheimer’s disease. J Neurochem 57:282–290

    Google Scholar 

  • Vogt BA, Gabriel M, Vogt LJ, Poremba A, Jensen EL, Kubota Y, Kang E (1991b): Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning. J Neurosci 11:1508–1514

    Google Scholar 

  • Vogt BA, Gorman LF (1982): Responses of cortical neurons to stimulation of corpus callosum in vitro. J Neurophysiol 48:1257–1273

    Google Scholar 

  • Vogt BA, Hedberg TG (1988): Autoradiographic localization of muscimol and baclofen binding sites in rodent cingulate cortex. Exp Brain Res 71:208–214

    Google Scholar 

  • Vogt BA, Jensen EL, Wiley RG (1993): Localization of opioid receptors to the somatodendritic region of cortical projection neurons with the immunotoxin OX7-saporin. In preparation

    Google Scholar 

  • Vogt BA, Miller MW (1983): Cortical connections between rat cingulate cortex and visual, motor and postsubicular cortices. J Comp Neurol 216:192–210

    Google Scholar 

  • Vogt BA, Pandya DN, Rosene DL (1987a): Cingulate cortex of the rhesus monkey: I. Cy-toarchitecture and thalamic afferents. J Comp Neurol 262:256–270

    Google Scholar 

  • Vogt BA, Peters A (1981): Form and distribution of neurons in rat cingulate cortex: Areas 32, 24 and 29. J Comp Neurol 195:603–625, 200:461 (erratum)

    Google Scholar 

  • Vogt BA, Plager MD, Crino PB, Bird ED (1990a): Laminar distributions of muscarinic acetylcholine, serotonin, GAB A and opioid receptors in human posterior cingulate cortex. Neuroscience 36:165–174

    Google Scholar 

  • Vogt BA, Rosene DL, Peters A (1981): Synaptic termination of thalamic and callosal Afferents in cingulate cortex of the rat. J Comp Neurol 201:265–283

    Google Scholar 

  • Vogt BA, Sikes RW, Swadlow HA, Weyand TG (1986): Rabbit cingulate cortex: Cytoarchitec-ture, physiological border with visual cortex, and afferent cortical connections of visual, motor, postsubicular and intracingulate origin. J Comp Neurol 248:74–94

    Google Scholar 

  • Vogt BA, Townes-Anderson E, Burns DL (1987b): Dissociated cingulate cortical neurons: Morphology and muscarinic acetylcholine receptor binding properties. J Neurosci 7:959–971

    Google Scholar 

  • Vogt BA, Van Hoesen GW, Vogt LJ (1990b): Laminar distribution of neuron degeneration in posterior cingulate cortex in Alzheimer’s disease. Acta Neuropathol 80:581–589

    Google Scholar 

  • von Economo C (1929): The Cytoarchitectonics of the Human Cerebral Cortex. London: Oxford University Press

    Google Scholar 

  • Waddington MM (1984): Atlas of Human Intracranial Anatomy. Rutland, VT: Academy Books

    Google Scholar 

  • Wiesendanger R, Wiesendanger M (1982a): The corticopontine system in the rat. I. Mapping of corticopontine neurons. J Comp Neurol 208:215–226

    Google Scholar 

  • Wiesendanger R, Wiesendanger M (1982b): The corticopontine system in the rat. II. The projection pattern. J Comp Neurol 208:227–238

    Google Scholar 

  • Wiley RG, Stirpe F, Thorpe PE, Oeltmann TN (1989): Neuronotoxic effects of a monoclonal anti-Thy 1.1 antibody (OX7) coupled to the ribosome inactivating protein, saporin, as studied by suicide transport experiments in the rat. Brain Res 505:44–54

    Google Scholar 

  • Wong RKS, Watkins DJ (1982): Cellular factors influencing GABA response in hippocampal pyramidal cells. J Neurophysiol 48:938–951

    Google Scholar 

  • Wyss JM, Sripanidkulchai K (1983): The indu-sium griseum and anterior hippocampal continuation in the rat. J Comp Neurol 219:251–272

    Google Scholar 

  • Wyss JM, van Groen T, Sripanidkulchai K (1990): Dendritic bundling in layer I of granular retrosplenial cortex: Intracellular labeling and selectivity of innervation. J Comp Neurol 295:33–42

    Google Scholar 

  • Young WS III, Kuhar MJ (1981): Neurotensin receptor localization by light microscopic autoradiography in rat brain. Brain Res 206:273–285

    Google Scholar 

  • Zeal AA, Rhoton AL (1978): Microsurgical anatomy of the posterior cerebral artery. J Neurosurg 48:534–559

    Google Scholar 

  • Zilles K, Wree A (1985): Cortex: Areal and laminar structure. In: The Rat Nervous System, Paxinos G, ed. New York: New York: Academic Press, Vol 1, pp 375–415

    Google Scholar 

  • Zilles K, Zilles B, Schleicher A (1980): A quantitative approach to cytoarchitectonics. VI. The areal pattern of the cortex of the albino rat. Anat Embryol 159:335–360

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vogt, B.A. (1993). Structural Organization of Cingulate Cortex: Areas, Neurons, and Somatodendritic Transmitter Receptors. In: Vogt, B.A., Gabriel, M. (eds) Neurobiology of Cingulate Cortex and Limbic Thalamus. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6704-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6704-6_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6706-0

  • Online ISBN: 978-1-4899-6704-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics