Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 26))

Abstract

Given a compact Riemann surface S of genus g ≥ 2, one says that a point p ∈ s is a Weierstrass point if there exists a differential of the first kind on S, different from 0, which vanishes at p to order at least g. The set of Weierstrass points on S is nonempty and finite; indeed, each Weierstrass point is assigned a positive integer called the Weierstrass weight, and then one has the result that the sum of the weights of all Weierstrass points on S is (g−l)g(g+l).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.O.L. Atkin. “Weierstrass Points at Cusps of T0(n),” Ann. of Math. 85 (1967), 42–45.

    Article  Google Scholar 

  2. H. Hasse. “Über den algebraischen Funktionenkörper der Fermatschen Gleichung,” Math. Abh. Bd. 2, Valter de Gruyter, Berlin New York, 1975.

    Google Scholar 

  3. M.A. Kenku. “Atkin-Lehner Involutions and Class Number Residua1ity,” Acta Arith. 33 (1977), 1–9.

    Google Scholar 

  4. D. Kubert and S. Lang. “Modular Units,” Grundlehren der mathematischen Wissenschaften 244, Springer, New York, 1981.

    Google Scholar 

  5. A. Kuribayashi and K. Komiya. “On Weierstrass Points of Non-hyper- elliptic Compact Riemann Surfaces of Genus Three,” Hiroshima Math. J. 7 (1977), 743–768.

    Google Scholar 

  6. J. Lehner and M. Newman. “Weierstrass Points of T0 (N),” Ann. of Math. 79 (1964), 360–368.

    Article  Google Scholar 

  7. J. Lewittes. “Automorphisms of Compact Riemann Surfaces,” Amer. J. Math. 85 (1963), 734–752.

    Article  Google Scholar 

  8. B.H. Matzat. “Über Weierstrasspunkte von Fermatkörpern,” Diss. Karlsruhe (1972).

    Google Scholar 

  9. D. Mumford. Curves and Their Jacobians, Univ. of Michigan Press, 1975.

    Google Scholar 

  10. A.P. Ogg. “On the Weierstrass Points of X0(M),” Ill. J. Math. 22 (1978), 31–35.

    Google Scholar 

  11. B. Olsen. “On Higher Weierstrass Points”, Ann. of Math. 95 (1972), 357–364.

    Article  Google Scholar 

  12. H. Petersson. “Zwei Bemerkungen über die Weierstrasspunkte der Kongruenzgruppen,” Arch. Math. 2 (1950), 246–250.

    Article  Google Scholar 

  13. B. Schoeneberg. “Über die Weierstrasspunkte in den Korpern der elliptischen Modul funktionen,” Abh. Math. Sem. Hamburg 17 (1951), 104–111.

    Article  Google Scholar 

  14. G. Shimura. Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, 1971.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rohrlich, D.E. (1982). Some Remarks on Weierstrass Points. In: Koblitz, N. (eds) Number Theory Related to Fermat’s Last Theorem. Progress in Mathematics, vol 26. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6699-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6699-5_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3104-8

  • Online ISBN: 978-1-4899-6699-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics