Skip to main content

Abstract

It is well known that the hematocrit in microvessels is a major determinant of oxygen transport to the tissue proper. The tube hematocrit plays the dominant role in establishing the apparent viscosity of blood in glass tubes (Barbee and Cokelet, 1971) and in microvessels of cat mesentery (Lipowsky et al., 1980). The flux of red blood cells at the capillary level describes the capacity of blood to deliver oxygen to the tissue surrounding the capillary. According to the theme of this symposium, models and measurements, we shall first examine the methods used to measure the hematocrit in microvessels. The model for interpreting the low capillary hematocrit and the experimental evidences on the balance of microvascular and macrovascular blood flow are reviewed. The arising issues which need to be resolved and the critics on the hematocrit measurements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht, K.H., Gaehtgens, P., Pries, A. and Heuser, M., 1979, The Fahraeus effect in narrow capillaries (i.d. 3.3 to 11.0 um), Mocrovas. Res., 18:33–47.

    Article  CAS  Google Scholar 

  • Baker, C.H., Davis, D.L., and Sutton, E.T., 1979, Microvascular plasma velocity and indicator dispersion with hemorrhage, Circ. Shock, 6:61–74.

    PubMed  CAS  Google Scholar 

  • Barbee, J.H, and Cokelet, G.R., 1971a, The Fahraeus effect, Microvase. Res. 3, 6–16.

    Article  CAS  Google Scholar 

  • Barbee, J.H., and Cokelet, G.R., 1971b, Prediction of blood flow in tubes with diameters as small as 29 y m. Microvasc. Res. 3, 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Copley, A.L., and Staple, P.H., 1962, Haemorheiological studies on the plasmatic zone in the microcirculation of the cheek pouch of Chinese and Syrian hamsters, Biorheology, 1:3–14.

    Google Scholar 

  • Crone, C., 1963, The Permeability of capillaries in various organs as determined by use of the indicator-diffusion method, Acta, Physiol. Scand. 58:292–305.

    Article  CAS  Google Scholar 

  • Effros, R.M., 1974, Osmotic extraction of hypotonic fluid from the lungs, J. Clin. Invest. 54:935–947.

    Article  PubMed  CAS  Google Scholar 

  • Jendrucko, R., and Lee, J.S., 1973, The measurement of hematocrit of blood flowing in glass capillaries by microphotmetry, Microvasc. Res. 6, 316–331.

    Article  PubMed  CAS  Google Scholar 

  • Jendrucko, R. and Lee, J.S., 1974, Hematocrit measurement in cat arterioles by micro-photometry, Fed. Proc. 33, 313.

    Google Scholar 

  • Johnson, P.C., Blaschke, J., Burton, K.S., and Dial, J.H, 1971, Influence of flow variations on capillary hematocrit in mesentery, Amer. J. Physio. 221, 105–112.

    CAS  Google Scholar 

  • Kenner, T., Leopold, H. and Hinghoffer-Szalkay, H., 1977, The continous high-precision measurement of the density of flowing blood, Pflügers Archiv, 370:25–29.

    Article  PubMed  CAS  Google Scholar 

  • Klitzman, B., and Duling, B.R., 1979, Microvascular hematocrit and red blood cell flow in resting and contracting striated muscle, Am. J. Physiol. 273: H481–H490.

    Google Scholar 

  • Krogh, A., 1929, “The anatomy and physiology of capillaries”, pp. 5–7, Yale University Press, New Haven, Conn.

    Google Scholar 

  • Lee, J.S., Indicator dilution in single microvessels and its integration for whole organs, pp. 162-167, in “9th Europ.Conf. of Microcirculation,” Ed. D.H. Lewis, Ed., Darger Basel

    Google Scholar 

  • Lee, J.S., 1980, Micro-Macroscopic Scaling, pp. 159–168, “Mathematics of microcirculation phenomena,” J.F. Gross and A. Popel, Ed. Raven Press, N.Y.

    Google Scholar 

  • Lee, J.S. and Attinger, E.O., 1978, Flow, mean transit time, and dispersion of indicator in a microcirculatory network, pp. 205–214, in “Cardiovascular System Dynamics,” J. Baan, A. Noordergraaf, and J. Raines, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Lee, J.S. and Fronek, A., 1970, An analysis of the exchange on indicators in single capillaries, Microvas. Res. 2:302–318.

    Article  CAS  Google Scholar 

  • Lee, J.S. and Fung, Y.C., 1970, Flow in locally constricted tubes at low Reynolds numbers, J. App. Mechanics, 37: 9–16.

    Article  Google Scholar 

  • Lee, J.S., and Lee, L.P., 1980, Transcapillary fluid flux induced by transient hypertonic disturbances, in “Routes of transcapillary transport: correlation of structure and function,” J.A.G., Rhodin, Ed. Hungarian Academy of Science, Budapest.

    Google Scholar 

  • Levenspeiel, O. and W.K. Smith, Notes on the diffusion-type model for the longitudinal mixing of fluids in flow, Chem. Eng. Sci. 6:227–233, 1957.

    Article  Google Scholar 

  • Levine, O.R., Dell, R.B., Bowe, E. and Hyman, A.I., 1974, Pulmonary extra-vascular chlorid space and albumin in adult dogs and puppies, Pediat. Res. 8:270–274.

    Article  PubMed  CAS  Google Scholar 

  • Lipowsky, H.H., Usami, S. and Chien, S., 1980, In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat, Microvas. Res., 19:297–319.

    Article  CAS  Google Scholar 

  • Meier, P., and Zierler, K.L., 1954, On the theory of the indicatordilution method for measurement of blood flow and volume, J. App. Physiol. 6: 731–744.

    CAS  Google Scholar 

  • Nellis, S.H. and Lee, J.S., 1974, Dispersion of indicator measured from micro-vessels of cat mesentery, Circ. Res. 35:580–591.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E.V., Merrell, M., Genecin, A., Monge, C. Milnor, W.R. and McKeever, W.P., 1951, The dye dilution method for describing the central circulation, an analysis of factors shaping the time-concentration curves, Circ. 4:735–746.

    Article  CAS  Google Scholar 

  • Taylor, G., 1953, Dispersion of soluble matter in solvent flowing through a tube, Proc. Royal Soc. of London, Ser. A., 219: 186–203.

    Article  CAS  Google Scholar 

  • Wiedman, M.P, 1963, Patterns of the arteriovenous pathways, pp. 891-934, “Handbook of Physiology” Sect. 2, vol. II, W.F. Hamilton and P. Dow, Ed., Am. Physiol. Soc. Wash. D.C.

    Google Scholar 

  • Zierler, K.L., 1963, Theory of use of indicators to measure blood flow and extra-cellular volume and calculation of transcapillary movement of tracers, Circ. Res. 12:464–471.

    Article  CAS  Google Scholar 

  • Zierler, K.L., 1965, Tracer-dilution techniques in the study of microvascular behavior, Fed. Proc. 24:1085–1091.

    PubMed  CAS  Google Scholar 

  • Zweifach, B.W., and Kossman, C.E., 1937, Micromanipulation of small vessels in the mouse, Am. J. Physiol.120:23–35.

    Google Scholar 

  • Zweifach. B.W., and Lipowsky, H.H., 1977, Quantitative studies of microcirculatory structure and function, III, Microvascular hemodynamics of cat mesentery and rabbit omentum, Circ. Res. 3, 380–390.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, Js., Kenner, T. (1982). Microvascular Dynamics. In: Kenner, T., Busse, R., Hinghofer-Szalkay, H. (eds) Cardiovascular System Dynamics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6693-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6693-3_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6695-7

  • Online ISBN: 978-1-4899-6693-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics