Skip to main content

Representation of Cardiac Pump with Special Reference to Afterload

  • Chapter
Book cover Cardiovascular System Dynamics

Abstract

The purpose of my presentation is to review the recent evolution of the ventricular pump model based on a time-varying elastance. It so happens that the major point of the current debates lie in the afterload characteristics of the real ventricle and the models. Therefore, I would first discuss the definition of afterload and then the characteristics of various models in comparison with the ventricular responses to alterations in afterload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. R. Milnor, Arterial impedance as ventricular afterload, Cire. Res. 36:565–570, (1975).

    Article  CAS  Google Scholar 

  2. C. W. Urschel, J. W. Covell, H. E. Sonnenblick, J. Ross, Jr., and E. H. Braunwald, Effects of decreased aortic compliance on performance of the left ventricle. Am. J. Physiol. 214: 298–304, (1968).

    PubMed  CAS  Google Scholar 

  3. G. Elzinga, N. Westerhof, Pressure and flow generated by the left ventricle against different impedances. Circ. Res., 32: 178–186, (1973).

    Article  PubMed  CAS  Google Scholar 

  4. A. Noordergraaf, and J. Melbin, Ventricular afterload: a succinct yet comprehensive definition. Amer. Heart J. 95: 545–547, (1978).

    Article  PubMed  CAS  Google Scholar 

  5. M. I. Noble, The contribution of blood momentum to left ventricular ejection in the dog. Circ. Res. 23: 663–670, (1978).

    Article  Google Scholar 

  6. K. Sagawa, Comparative models of overall circulatory mechanics in: “Advances in Biomedical Engineering” Vol. 3 Ed. by Brown JHU, J. F. Dickson, III, New York; Academic Press, 1–95 (1973).

    Google Scholar 

  7. K. Sagawa, Analysis of the ventricular pumping capacity as a function of input and output pressure loads, in: “Physical Bases of Circulatory Transport: Regulation and Exchange, edited by E. B. Reeve and A. C. Guyton, Philadelphia: Saunders 141–149, (1967).

    Google Scholar 

  8. C. W. Herndon and K. Sagawa, Combined effects of aortic and right atrial pressures on aortic flow, Am. J. Physiol., Am. J. Physiol.: 217, (67–72).

    Google Scholar 

  9. K. Sagawa, The circulation and its control, I: Mechanical properties of the cardiovascular system. in: “Engineering Principles in Physiology” Ed. by Brown, JHU, D. S. Gann, New York; Academic Press, 49–71, (1973).

    Google Scholar 

  10. J. E. W. Beneken, Some computer models in cardiovascular research, in: “Cardiovascular Fluid Dynamicsl”, Ed. by D. H. Bergel, London; Academic Press, 173–213, (1972).

    Google Scholar 

  11. H. Suga, Time course of left ventricular pressure-volume relationship under various end-diastolic volumes, Jap. Heart J. Jap. Heart J: 10, (509–515).

    Google Scholar 

  12. H. Suga, Time course of left ventricular pressure-volume relationship under various extents of aortic occlusion, Jap. Heart J., Jap. Heart J.: 11, (373–378).

    Google Scholar 

  13. H. Suga, Left ventricular pressure-volume ratio in systole as an index of inotopeism, Jap. Heart J. 12: 153–160 (1971).

    Article  PubMed  CAS  Google Scholar 

  14. H. Suga, K. Sagawa, and A. A. Shoukas, Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio, Circ. Res., Circ. Res.: 32, (314–322).

    Google Scholar 

  15. H. Suga and K. Sagawa, Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle, Circ. Res., 35: 117–126, (1974).

    Article  PubMed  CAS  Google Scholar 

  16. H. Suga, and K. Sagawa, End-diastolic and end-systolic ventricular volume clamper for isolated canine heart, Am. J. Physiol., 233: H718–H722, (1977).

    PubMed  CAS  Google Scholar 

  17. H. Suga, A. Kitabatake and K. Sagawa, End-systolic pressure determines stroke volume from fixed end-diastolic volume in the isolated canine left ventricle under a constant contractile state, Circ. Res., Circ. Res.: 44, 238–249.

    Google Scholar 

  18. H. Suga, K. Sagawa and L. Demer, Determinants of instantaneous pressure in canine left ventricle: time and volume specification, Circ. Res. Circ. Res: 46, (256–263).

    Google Scholar 

  19. A. H. Brady, Length-tension relations compared in cardiac muscle, Am. Zoologists, Am. Zoologists: 7, 603–610.

    Google Scholar 

  20. R. R. Taylor, Active length-tension relations compared in isometric, afterload and isotonic contractions of cat papillary muscle, Circ. Res. Circ. Res: 26, (279–288).

    Google Scholar 

  21. H. Suga, T. Saeki and K. Sagawa, End-systolic force-length relationship of non-excised canine papillary muscle, Am. J. Physiol., 233: H711–H717, (1977).

    PubMed  CAS  Google Scholar 

  22. D. A. Robinson, Ventricular dynamics and the cardiac representation problem. in: “Circlatory Analog Computers” Ed. by Noordergraaf, A., Amsterdam, North-Holland Publ. Co., 56–81, (1963).

    Google Scholar 

  23. F. S. Grodins, J. F. Buoncristiani, General formulation of the cardiovascular control problem — mathematical models of the mechanical system, in: “Physical Bases on Circulatory Transport: Regulation and Exchange”, Ed. by E. B. Reeve and A. C. Guyton, Philadelphia; Saunders, 61–75, (1967).

    Google Scholar 

  24. J. F. Buoncristiani, A. J. Liedtke, R. M. Strong, and C. W. Urschel, Parameter estimates of a left ventricular model during ejection, IEEE Trans. BME-20, 110–114, (1973).

    Google Scholar 

  25. G. Elzinga and N. Westerhof, End-diastolic volume and source impedance of the heart, in: “Physiological Bases of Starling’s Law of the Heart” Ciba Foundation Symposium Series, 24, 241-255, (1973).

    Google Scholar 

  26. G. Elzinga and N. Westerhof, How to quantify pump function of the heart, Circ. Res. 44: 303–308, (1979)

    Article  PubMed  CAS  Google Scholar 

  27. N. Westerhof and G. Elzinga, The apparant source resistance of heart and muscle, Ann. Biomed. Eng., Ann. Biomed. Eng.: 6, (16–32).

    Google Scholar 

  28. D. B. Geselowitz, Apparent consistency of two dynamic models for the pressure-flow relation of the left ventricle, The Physiologist, 19: 205, (1976).

    Google Scholar 

  29. N. I. M. Noble, Left ventricle load, arterial impedance and their inter-relationship, Cardiovasc. Res. 13: 183–198, (1979).

    Article  PubMed  CAS  Google Scholar 

  30. R. R. Taylor, J. W. Covell and J. Ross, Jr., Volume-tension diagrams of ejecting and isovolumic contractions in left ventricle, Am. J. Physiol., 216: 1097–1102, (1969)

    PubMed  CAS  Google Scholar 

  31. J. Clark, Jr., R. C. Pruett, D. L. Baldridge, R. Scrinivasan, H. M. Bouland, J. S. Cole and R. W. Brower, A functional model for the characterization of the ventricular mechanics of the human subject, Med. Biol. Eng. Comput., Med. Biol. Eng. Comput.: 15, (335–338).

    Google Scholar 

  32. P. L. M. Kerkhof, A. D. VanDijk, T. A. Jong, J. Koops, R. J. Moore, and J. Baan, Pump function of the left ventricle evaluated from pressure-volume loops, in.: “Cardiac Dynamics”, Ed. by J. A. C. Baan, Arntzenius, E. L. Yellin, The Hague; Nijhoff Publ., 279–291, (1980).

    Chapter  Google Scholar 

  33. D. H. Boettcher, S. F. Vatner, G. R. Heyndricks, and E. Braunwald, Extent of utilization of the Frank-Starling mechanism in conscious dogs. Am. J. Physiol. 234: H338–H345, (1978).

    PubMed  CAS  Google Scholar 

  34. J. D. Marsh, L. H. Green, J. Wynne, P. F. Cohn, and W. Grossman, Left ventricular end-systolic pressure-dimension and stress length relations in normal human subjects, Am. J. Cardiol., 44: 1311–1317, (1979).

    Article  PubMed  CAS  Google Scholar 

  35. G. H. Templeton, K. Wildenthal, J. T. Willerson, and J. H. Mitchell, Influence of acute myocardial depression of left ventricular stiffness and its elastic and viscous components, J. Clin. Invest., J. Clin. Invest.: 56, (278–285).

    Google Scholar 

  36. W. C. Hunter, J. S. Janicki, K. T. Weber, and A. Noordergraaf, Flow-pulse response: a new method for the characterization of ventricular mechanics, Am. J. Physiol. 237: H282–292, (1979).

    PubMed  CAS  Google Scholar 

  37. S. Shroff, J. S. Janicki and K. T. Weber, Systolic elastance and resistance in ejecting left ventricle, Feder. Proc. 39: 977, (1980).

    Google Scholar 

  38. N. Ishide, Y. Shimizu, Y. Maruyama, Y. Koiwa, T. Nunokawa, S. Isoyama, S. Kataoka, T. Tamaki, E. Inooka, and T. Takishima, Effects of changes in the aortic input impedance on systolic pressure-ejected volume relationships in the isolated supported canine left ventricle, Cardiovasc. Res. Cardiovasc. Res: 14, (229–243).

    Google Scholar 

  39. H. Suga, End-systolic pressure-volume relation (Letters to the Editor) Circulation, 59: 419–420, (1979).

    Article  PubMed  CAS  Google Scholar 

  40. K. Sagawa, (Reply to a Letter to the Editor by M. Iizuka), “Comments on ‘The ventricular pressure-volume diagram revisited’”, Circ. Res., 44: 731, (1979).

    Article  Google Scholar 

  41. H. Suga, Theoretical analysis of a left ventricular pumping model based on the systolic time-varying pressure-volume ratio, IEEE Trans. BME — 18: 47–55, (1971).

    Article  CAS  Google Scholar 

  42. W. L. Maughan, Shoukas, A.A., K. Sagawa and M. L. Weisfeldt, Instantaneous pressure-volume relationship of the canine right ventricle, Circ. Res. Circ. Res: 44, (309–315).

    Google Scholar 

  43. H. Piene, Interaction between the right heart ventricle and its arterial load, Am. J. Physiol., 238: H932–H937, (1980).

    PubMed  CAS  Google Scholar 

  44. H. Piene, and T. Sund, Performance of the right ventricle: a pressure plane analysis, Cardiovasc. Res. 14: 217–222, 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sagawa, K. (1982). Representation of Cardiac Pump with Special Reference to Afterload. In: Kenner, T., Busse, R., Hinghofer-Szalkay, H. (eds) Cardiovascular System Dynamics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6693-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6693-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6695-7

  • Online ISBN: 978-1-4899-6693-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics