Skip to main content

Part of the book series: Progress in Physics ((PMP,volume 4))

Abstract

Quantum chromodynamics should need little introduction, since it already permeates almost all descriptions of strong interaction phenomena nowadays. We recount here very briefly the basic motivation, beginning with some factual evidence:

  1. 1.

    Quarks of fractional charge and three colors seem to be required as constituents of hadrons in order to understand the spectrum of hadrons and their resonances.

  2. 2.

    The ratio of electron-quark to neutrino-quark deep inelastic scattering argues strongly for fractional charge of the quarks.

  3. 3.

    In addition to the spectroscopic evidence, the observed width of the decay πo → 2γ and the large cross section for e+e → hadrons is successfully understood provided there are 3 colors of quarks.

  4. 4.

    The color-symmetry should be exact (or very nearly so); otherwise we would expect additional low-lying color non-singlet hadron states, states for which there is no empirical evidence.

Work supported by the Department of Energy under contract number DE-AC03-76SF00515.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. If you don’t know, you are invited to consult someone else’s lectures.

    Google Scholar 

  2. S. Brodsky, these proceedings.

    Google Scholar 

  3. An introduction to this method can be found in J. C. Taylor, “Gauge Theories of the Weak Interactions,” Cambridge University Press, 1976.

    Google Scholar 

  4. Actually an exception to this might be the pion in the limit of massless u and d quarks. In that circumstance pions are believed to be massless Goldstone bosons. However, none of that appears to have much connection with the phenomenon of QCD confinement.

    Google Scholar 

  5. A recent review is given by S. Weinberg, I. I. Rabi Festschrift, to be published by the New York Academy of Sciences.

    Google Scholar 

  6. See, for example, D. Robson, Nucl. Phys. B130, 328 (1977)

    Google Scholar 

  7. K. Koller and T. Walsh, Nucl. Phys. B140, 449 (1978).

    Article  Google Scholar 

  8. J. Coyne, P. Fishbane and S. Meshkov, NBS/Virginia preprint (1980).

    Google Scholar 

  9. S. Weinberg, Phys. Rev. D11, 3583 (1975).

    Google Scholar 

  10. See Robson, Ref. 6, for a discussion.

    Google Scholar 

  11. Actually an indefinite number of gluons might “bleach” the color field and produce a color singlet state (of fractional charge). That this is a theoretical possibility—although not a very desirable one—was emphasized to me by Marvin Weinstein.

    Google Scholar 

  12. For a review, see J. Weis, Acta. Phys. Polon. B9, 1051 (1978).

    Google Scholar 

  13. W. Heisenberg and H. Euler, Zeitschrift fur Physik 98, 714 (1936);

    Article  Google Scholar 

  14. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Article  Google Scholar 

  15. A recent study of this mechanism has been made by A. Casher, H. Neuberger, and S. Nussinov, Phys. Rev. D20, 179 (1979); also Tel-Aviv preprint TAUP-747/79; see also H. Neuberger, preprint TAUP-721/79.

    Google Scholar 

  16. However, the OZI rule does give some motivation for a small coupling

    Google Scholar 

  17. I thank Stanley Mandelstam for pointing this out to me.

    Google Scholar 

  18. J. Bjorken, Lecture Notes in Physics 56, “Current Induced Reactions,’ ed. by J. Koerner, G. Kramer, and D. Schildknecht, Springer-Verlag (N.Y.), 1975.

    Google Scholar 

  19. Were A μ not taken to be traceless, the coefficient of the unit matrix would be a U(1) degree of freedom not coupled to color at all. There is no evidence for its existence as a physical degree of freedom.

    Google Scholar 

  20. A hint: the quantity Tr J μ J μ is a color invariant.

    Google Scholar 

  21. The Lagrangian density is L = Tr (E 2-B 2.

    Google Scholar 

  22. L. Faddeev and V. Popov, Phys. Lett. 25B, 29 (1967).

    Google Scholar 

  23. Our notation follows that of Reference 1.

    Google Scholar 

  24. S. Frenkel, Phys. Rev. D13, 2325 (1976)

    Google Scholar 

  25. W. Konetachny and W. Kummer, Nucl. Phys. B100, 106 (1975);

    Article  Google Scholar 

  26. J. Willemsen, Phys. Rev. D17, 574 (1978).

    Google Scholar 

  27. Tbis can also be explicitly checked without much difficulty.

    Google Scholar 

  28. V. N. Gribov, SLAC preprint SLAC-TRANS-176; S. Mandelstam, invited talk at Washington Meeting of the American Physical Society, 1977.

    Google Scholar 

  29. Generalizations of the problems have been made by M. Atiyah and I. Singer. Quantization in axial gauge (A 3=0) provides some improvement; yet there remains some residual gauge invariance, as well as possible problems with boundary terms. R. Jackiw and J. Goldstone [Phys. Lett. 74B, 81 (1978)] have presented an SU(2) example of quantization without subsidiary conditions; however the resultant formalism contains some possibly troublesome singular expressions, as well as appearing to be rather unmanageable. See also V. Baluní and B. Grossman, Phys. Lett. 78B, 226 (1978).

    Google Scholar 

  30. We are thinking here of the LSZ formalism as used in Book II.

    Google Scholar 

  31. T. D. Lee and M. Nauenberg, Phys. Rev. 133, B1549 (1964);

    Article  Google Scholar 

  32. T. Kinoshita, J. Math. Phys. 3, 650 (1962).

    Article  Google Scholar 

  33. S. Drell and T. M. Yan, Phys. Rev. Lett. 25, 316 (1970).

    Article  Google Scholar 

  34. See the lectures of R. Stroynowski, these proceedings, for an up-to-date review.

    Google Scholar 

  35. K. Wilson, Phys. Rev. 179, 1499 (1969).

    Article  Google Scholar 

  36. G. Sterman and S. Weinberg, Phys. Rev. Letters 39, 1436 (1977).

    Article  Google Scholar 

  37. This problem is under study in collaboration with M. Fischler.

    Google Scholar 

  38. R. Jackiw and C. Rebbi, Phys. Rev. Letters 37, 172 (1976); C. Callan, R. Dashen, and D. Gross, Phys. Letters 63B, 334 (1976).

    Google Scholar 

  39. Provided, of course, one does not travel via field variables A(x) with x on the boundary of the box.

    Google Scholar 

  40. A. Belavin, A. Polyakov, A. Schwartz, and Y. Tyupkin, Phys. Lett. 59B, 85 (1975).

    Google Scholar 

  41. C. Callan, R. Dashen, and D. Gross, Phys. Rev. D17, 2717 (1978).

    Google Scholar 

  42. S. Coleman, “The Uses of Instantons,” Harvard University preprint to be published in Proceedings of the 1977 International School of Subnuclear Physics “Ettore Majorana.”

    Google Scholar 

  43. This has been verified in field-theoretical contexts by J. Willemsen, UC-Santa Cruz preprint (1979).

    Google Scholar 

  44. L. Baulieu, J. Ellis, M. K. Gaillard, and W. Zakrzewski, Phys. Lett. 77B, 290 (1978);

    Google Scholar 

  45. N. Andrei and D. Gross, Phys. Rev. D18, 468 (1978);

    Google Scholar 

  46. R. Carlitz and C. Lee, Phys. Rev. D17, 3238 (1978).

    Google Scholar 

  47. G. Veneziano, Nucl. Phys. B117, 519 (1976).

    Article  Google Scholar 

  48. D. Robson m cit.; Reference 6.

    Google Scholar 

  49. H. Fritzsch and P. Minkowski, Nuovo Cimento 30A, 393 (1975).

    Article  Google Scholar 

  50. R. Jaffe and K. Johnson, Phys. Lett. 60B, 201 (1976).

    Google Scholar 

  51. K. Johnson (private communication) argues that the pressure on the bag from the gluon field implies E2 - B2. The modes considered in Ref. 42 do not satisfy that constraint.

    Google Scholar 

  52. See References 6 and 39; also, P. Freund and Y. Nambu, Phys. Rev. Letters 34, 1646 (1975).

    Google Scholar 

  53. J. Bolzan, K. Geer, W. Palmer, and S. Pinsky, Phys. Rev. Letters 35, 419 (1975);

    Article  Google Scholar 

  54. J. Bolzan, W. Palmer, and S. Pinsky, Phys. Rev. D14, 3202 (1976).

    Google Scholar 

  55. See for example E. Witten, Nucl. Phys. B156, 269 (1979) for a nice discussion.

    Google Scholar 

  56. I am grateful to R. Brower for emphasizing this to me and for very useful discussions.

    Google Scholar 

  57. M. Chanowitz, Phys. Rev. D12, 918 (1975);

    Google Scholar 

  58. S. Brodsky, D. Coyne, T. DeGrand, and R. Horgan, Phys. Lett. 73B, 203 (1978).

    Google Scholar 

  59. R. Barbieri, E. d’Emilio, G. Curchi, and E. Remiddi, Nucl. Phys. B154, 535 (1979).

    Article  Google Scholar 

  60. M. Krammer, Phys. Letters 74B, 361 (1978).

    Google Scholar 

  61. A. Billoire, R. Lacaze, A. Morel, and H. Navelet, Phys. Lett. 80B, 381 (1979).

    Google Scholar 

  62. R. Brandelik et al., Phys. Lett. 74B, 292 (1978).

    Google Scholar 

  63. J. Schwinger, Phys. Rev. 125, 1043 (1962);

    Article  Google Scholar 

  64. J. Schwinger, Phys. Rev. 127, 324 (1962). See also Ref. 59.

    Google Scholar 

  65. The approach discussed here has been independently worked out by S. Drell and also D. Stump (private communications). They have studied the nature of this term in greater depth.

    Google Scholar 

  66. This is a consequence of the renormalizability of the theory, a fact which is not self-evident in this formalism. A direct check that the next term in the expansion behaves properly is at present being carried out by S. Drell and R. Hughes (private communication).

    Google Scholar 

  67. See for example Chapter 19 of Book II.

    Google Scholar 

  68. The history of renormalizability is traced quite completely by M. Veltman, Proceedings of the 6th International Symposium on Electron and Photo Interactions at High Energies, ed. H. Rollnik and W. Pfeil, North-Holland (Amsterdam), 1974; p. 429.

    Google Scholar 

  69. D.R.T. Jones, Nucl. Phys. B75, 531 (1974).

    Article  Google Scholar 

  70. W. Caswell, Phys. Rev. Lett. 33, 244 (1974).

    Article  Google Scholar 

  71. T. Appelquist, M. Dine, and I. Muzinich, Phys. Lett. 69B, 231 (1977)

    Google Scholar 

  72. T. Appelquist, M. Dine, and I. Muzinich, Phys. Rev. D8, 2074 (1978).

    Google Scholar 

  73. H. Thacker, C. Quigg, and J. Rosner, Phys. Rev. D18, 287 (1978).

    Google Scholar 

  74. J. Richardson, Phys. Lett. 82B, 272 (1979).

    Google Scholar 

  75. B. Margolis, R. Roskies, and N. de Takacsy, McGill University preprint (1978);

    Google Scholar 

  76. R. Levine and X. Tomozawa, Phys. Rev. D19, 1572 (1979).

    Google Scholar 

  77. M. Krammer and H. Krasemann, preprint DESY 79/20.

    Google Scholar 

  78. For a review, see J. Jackson, Proceedings of the 1977 European Conference on Particle Physics, Budapest, ed. by L. Jenik and I. Montvay (GRIP, Budapest, 1978 ), p. 601;

    Google Scholar 

  79. K. Gottfried, Proceedings of the 1977 International Symposium on Leptons and Photons at High Energies, Hamburg, ed. F. Gutbrod (DESY, Hamburg, 1978 ), p. 667.

    Google Scholar 

  80. N. Isgur and G. Karl, Phys. Rev. D19, 2653 (1979).

    Google Scholar 

  81. A recent review is given by C. Quigg, Fermilab preprint FERMILABCONF 79/74 THY, to be published in the Proceedings of the 9th International Conference on Leptons and Photons at High Energy, Fermilab, Batavia, IL (1979).

    Google Scholar 

  82. K. Gottfried, Phys. Rev. Lett. 40, 598 (1978); M. Peskin, Nucl. Phys. B156, 365 (1979);

    Google Scholar 

  83. G. Bhanot and M. Peskin, Nucl. Phys. B156, 391 (1979).

    Article  Google Scholar 

  84. A. Ore and J. Powell, Phys. Rev. 75, 1696 (1949).

    Article  Google Scholar 

  85. E. Witten, Harvard preprint HUTP-79/A007 (1979).

    Google Scholar 

  86. M. Shifman, A. Vainstein, and V. Zakharov, Nucl. Phys. B147, 385, 448 (1978).

    Google Scholar 

  87. V. Novikov, M. Shifman, A. Vainstein, and V. Zakharov, ITEP preprint (1979).

    Google Scholar 

  88. J. Bell and R. Jackiw, Nuovo Cimento 60A, 47 (1969);

    Article  Google Scholar 

  89. S. Adler, Phys. Rev. 177, 2426 (1969).

    Article  Google Scholar 

  90. G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976);

    Article  Google Scholar 

  91. Phys. Rev. D14, 432 (1976).

    Article  Google Scholar 

  92. This idea seems to have originated with Callan, Dashen, and Gross, Ref. 35.

    Google Scholar 

  93. The adiabatic hypothesis is in fact unnecessary. A comprehensive study has been made by N. Christ (Columbia University Preprint CU-TF-160 (1979)), who relates all this to the work of M. Atiyah and I. Singer on spectral flow and the index theorem [M. Atiyah, N. Hitchen, and I. Singer, Proc. Nat. Acad. Sci. USA 74, 2662 (1977); M. Atiyah, V. Patodi, and I. Singer, Math. Proc. Camb. Phil. Soc. 77, 43 (1975); 79, 71 (1976)].

    Google Scholar 

  94. J. Kiskis [Phys. Rev. D18, 3690 (1978)] has explicitly identified the levels as they cross zero energy.

    Google Scholar 

  95. L. Brown, R. Carlitz, and C. K. Lee, Phys. Rev. D16, 417 (1977)

    Google Scholar 

  96. A. Schwartz, Phys. Lett. 678, 172 (1977)

    Google Scholar 

  97. R. Jackiw and C. Rebbi, Phys. Rev. D16, 1052 (1977);

    Article  Google Scholar 

  98. N. K. Nielsen and B. Schroer, Nucl. Phys. B127, 493 (1977).

    Article  Google Scholar 

  99. M. Baker, R. Johnson, and R. Willey, Phys. Rev. 163, 1699 (1967);

    Article  Google Scholar 

  100. J. Cornwall and R. Norton, Phys. Rev. D8, 3338 (1973);

    Google Scholar 

  101. R. Jackiw and K. Johnson, Phys. Rev. D8, 2386 (1973).

    Google Scholar 

  102. C. Callan, R. Dashen, and D. Gross, Phys. Rev. D12, 2717 (1978);

    Google Scholar 

  103. D. Caldi, Phys. Rev. Lett. 39, 121 (1977);

    Article  Google Scholar 

  104. R. Carlitz and D. Creamer, Annals of Physics 118, 429 (1979).

    Article  Google Scholar 

  105. H. Quinn and M. Weinstein (private communication).

    Google Scholar 

  106. There is a solid current-algebra calculation connection 9 with the neutron electric dipole moment; R. Crewther, P. diVecchia, G. Veneziano, and E. Witten, CERN preprint CERN-TH-2735 (1979);

    Google Scholar 

  107. V. Baluni, Phys. Rev. D19, 2227 (1979).

    Google Scholar 

  108. J. Ellis and M. K. Gaillard, Nucl. Phys. B150, 141 (1979);

    Article  Google Scholar 

  109. B. Morel, Harvard preprint HUTP-79/A009 (1979).

    Google Scholar 

  110. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

    Article  Google Scholar 

  111. R. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977).

    Article  Google Scholar 

  112. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).

    Article  Google Scholar 

  113. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

    Article  Google Scholar 

  114. T. Donnelly, S. Freedman, R. Lytel, R. Peccei, and M. Schwartz, Phy. Rev. D18, 1607 (1978).

    Google Scholar 

  115. The reader is strongly urged to consult the lectures of Sidney Coleman, Ref. 36, for a complete and lucid explanation of the methodology.

    Google Scholar 

  116. K. Wilson, Phys. Rev. D10, 2445 (1975).

    Google Scholar 

  117. J. Kogut, R. Pearson, and J. Shigemitsu, Phys. Rev. Lett. 43, 484 (1979).

    Article  Google Scholar 

  118. M. Creutz, Brookhaven preprint, September 1979.

    Google Scholar 

  119. P. Hasenfratz and J. Kuti, Phys. Reports C, 75 (1978). For a newer review, see R. Jaffe, MIT preprint MIT-CTP-814 (1979).

    Google Scholar 

  120. A. Chodos, R. Jaffe, K. Johnson, C. Thorne, and V. Weisskopf, Phys. Rev. D9, 3471 (1974);

    Google Scholar 

  121. A. Chodos, R. Jaffe, K. Johnson, C. Thorne, and V. Weisskopf, Phys. Rev. D10, 2599 (1974).

    Google Scholar 

  122. C. Callan, R. Dashen, and D. Gross, op. cit., Ref. 35; also Lectures at La Jolla Institute Workshop on Particle Theory, August 1978 (Princeton preprint), and Phys. Rev. D19, 1826 (1979).

    Google Scholar 

  123. H. Nielsen and P. Olesen, Nucl. Phys. B61, 45 (1972).

    Article  Google Scholar 

  124. For a review, see S. Mandelstam, UC-Berkeley preprint UCB-PTH-79/9 (1979), to be published in the Proceedings of the 9th International Symposium on Lepton and Photon Interactions at High Energy, Fermilab, Batavia, IL (1979).

    Google Scholar 

  125. R. Anishetty, M. Baker, S. Kim, J. Ball, and F. Zachariasen, Phys. Lett. 86B, 52 (1979);

    Google Scholar 

  126. M. Baker, J. Lucht, P. Lucht, and F. Zachariasen, Caltech preprint CALT-68–741 (1979);

    Google Scholar 

  127. U. Bar-Gadda, SLAC preprint SLAC-PUB-2347;

    Google Scholar 

  128. S. Mandelstam, Ref. 94 and UC-Berkeley preprint UCB-PTH 79/8.

    Google Scholar 

  129. Y. Nambu, Proceedings of the 19th International Conference on High Energy Physics, Tokyo, Japan (1978), p. 971, and references therein.

    Google Scholar 

  130. A recent review is given by J. Pati, University of Maryland preprint MDDP-TR-79–066 (1978), to be published in Seoul Symposium on Elementary Particle Physics, Seoul, Korea (1978).

    Google Scholar 

  131. L. B. Okun, M. Voloshin, and V. Zakharov, Moscow preprint ITEP-79 (1979)

    Google Scholar 

  132. Our approach roughly follows that of Jackiw and Rebbi (Ref. 32) and of K. Bitar and S. J. Chang Phys. Rev. D17, 486 (1978);

    Google Scholar 

  133. K. Bitar and S. J. Chang Phys. Rev. D18 435 (1978).

    Google Scholar 

  134. Again, we recommend the Erice Lectures of S. Coleman (Ref. 36) as an excellent introduction.

    Google Scholar 

  135. J. H. Van Vleck, Proc. Nat. Acad. Sci. 14, 178 (1928).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bjorken, J.D. (1982). Elements of Quantum Chromodynamics. In: Lectures on Lepton Nucleon Scattering and Quantum Chromodynamics. Progress in Physics, vol 4. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6691-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6691-9_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3079-9

  • Online ISBN: 978-1-4899-6691-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics