Skip to main content

Mathematics: Trends

  • Chapter
Discrete Thoughts

Abstract

Unlike disciplines with empirical backgrounds, mathematics lacks central problems that are clearly defined and universally agreed upon. As a result, the development of mathematics proceeds along a number of seemingly unrelated fronts, which tends to present a picture of fragmentation and division. Adding to the difficulty of evaluating its present state and of (guardedly!) predicting its future, is the fact that during the past few decades mathematics became increasingly isolated from its sister disciplines, and as a result of turning inward there was a marked increase in the level of abstraction and a reinforcement of the ever-present trend to greater and greater generality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stone, M. The revolution in mathematics. American Mathematical Monthly 68, 715–34 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  2. Ewing, J. H., Gustafson, W. H. Halmos, P. R. Molgavkar, S. H. Wheeler, W. H., and Ziemer, W. P. American mathematics from 1940 to the day before yesterday. American Mathematical Monthly 83, 503–16 (1976).

    Article  MATH  Google Scholar 

  3. Mckean, H. P. and Singer, I. M. Curvature and the eigenvalues of the Laplacian. Journal of Differential Geometry 1, 43–69 (1967).

    MathSciNet  MATH  Google Scholar 

  4. Deakin, M. A. B. Catastrophe theory and its applications. Mathematical Scientist 2, 73–94 (1977).

    Google Scholar 

  5. Fowler, D. H. The Riemann-Hugoniot catastrophe theory and the van der Waals equation. In Towards a theoretical biology, Vol. 4, pp. 1–7. (Ed. V. H. Waddington.) Edinburgh University Press.

    Google Scholar 

  6. Kac, M. Quelques problèmes mathématiques en physique statistique. Les Presses de l’Université de Montréal (1974).

    Google Scholar 

  7. Kac, M. On applying mathematics: reflections and examples. Quarterly Journal of Applied Mathematics 30, 17–29 (1972).

    MATH  Google Scholar 

  8. Chaitin, G. J. Randomness and mathematical proof. Scientific American 232 (5), 47–52 (1975).

    Article  Google Scholar 

  9. May, R. M. Simple mathematical models with very complicated dynamics. Nature 261, 459–67 (1970).

    Article  Google Scholar 

  10. May, R. M. Biological population nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–7 (1974).

    Article  Google Scholar 

  11. Linnik, Y. V. Les nombres entries se pretent-ils aux jeux hasard? Atoms 245, 441–6 (1967).

    Google Scholar 

  12. Rota, G. C. Combinatorial analysis. In the present volume.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kac, M., Rota, GC., Schwartz, J.T. (1986). Mathematics: Trends. In: Discrete Thoughts. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6667-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6667-4_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3285-4

  • Online ISBN: 978-1-4899-6667-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics