Skip to main content

Hyperbolicity and Möller-Morphism for a Model of Classical Statistical Mechanics

  • Chapter

Part of the book series: Progress in Physics ((PMP,volume 10))

Abstract

We consider a gas of point particles in IR+. The first particle has mass M, the others m and M>m. The particles interact by elastic collisions (among themselves and with the wall at the origin). Let * be the phase space and μ a Gibbs measure for the system, St denotes the time flow and (*,μ,St) is a dynamical system.requires a Solution of the Milne problem.

We identify the m -particles during their evolution so that they keep the same velocity until they collide with the M -particle. Hence the motion is free, asymptotically far from the origin: free particles come from, +∞ interact with the M -particle and then move back free to +∞. We prove that the Möller wave operators exist, asymptotic Ω± completeness holds and that Ω −1Ω+ defines a non-trivial scattering matrix for the system. Ω+ define isomorphisms between the dynamical system (*°,μ°,S°t) and (*,μ,St) (*°,μ°,S°t) refers to the case when all the particles have mass m and μ° has the same thermodynamical parameters as μ.

An independent generating partition is explicitely known for the system (*°,μ°,S°t) and Ω± transform it in an independent generating partition for (*,μ,St), thereby proving that this is a Bernoulli flow.

The proof of the existence of the wave operator is based on the (almost everywhere) existence of contractive manifolds. Namely we prove that for almost all configurations x∈* the following holds. Fix any finite subset I of particles in x and consider all the configurations y obtained by changing the coordinates of the particles in I while leaving all the others fixed. Then if the change is small enough Stx and Sty become (locally) exponentially close.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizenmann M., Goldstein S., Lebowitz J. L. Ergodic properties of infinite systems. Springer Lect. Notes in Physics 38, 112 (1975).

    Article  Google Scholar 

  2. Aizenmann M., Goldstein S., Lebowitz J. L. Ergodic Properties of an infinite one dimensional hard rods system. Comm. Math. Phys.

    Google Scholar 

  3. Arnold V. I., Avez A. Problemes ergodiques de la mecanique classique. Paris, Gauthier-Villars, 1967.

    Google Scholar 

  4. Boldrighini C., De Masi A. Ergodic properties of a class of one dimensional systems of Statistical mechanics. In preparation.

    Google Scholar 

  5. Boldrighini C., pobrushijx R. L., Sukhov Yu. One dimensional hard rod caricature of hydrodynamics. J. Stat. Phys. 31, 577 (1983}.

    Google Scholar 

  6. Boldrighini C., De Masi A., Nogueira A., Presutti E. The dynamics of a particle interacting with a semiinfinite ideal gas is a Bernoulli flow. Preprint, 1984.

    Google Scholar 

  7. Boldrighini C., Pellegrinotti A., Presutti E., Sinai Ya. G., Solovietchic M. R. Ergodic properties of a one dimensional semi-infinite system of Statistical mechanics. Preprint, 1984.

    Google Scholar 

  8. Boldrighini C., Pellegrinotti A., Triolo L. Convergence to stationary states for infinite harmonic systems. J. Stat. Phys. 30 (1983).

    Google Scholar 

  9. Cornfeld I. P., Fomin S. V., Sinai Ya. G. Ergodic theory. Springer-Verlag, 1982.

    Google Scholar 

  10. De Pazzis O. Ergodic properties of a semi-infinite hard rods system. Commun. Math. Phys. 22, 121 (1971).

    Google Scholar 

  11. Dobrushin R. L., Pellegrinotti A., Sukhov Yu., Triolo L. In preparation.

    Google Scholar 

  12. Dobrushin R. L., Sukhov Yu. The asymptotics for some degenerate models of evolution of systems with an infinite number of particles. J. Soviet Math. 16, 1277 (1981).

    Article  Google Scholar 

  13. Farmer J., Goldstein S., Speer E. R., Invariant states of a thermally conducting barrier. Preprint, 1983.

    Google Scholar 

  14. Goldstein S., Lebowitz J. L., Ravishankar K. Ergodic properties of a system in contact with a heat baths a one dimensional model. Comm. Math. Phys. 85, 419 (1982).

    Article  Google Scholar 

  15. Goldstein S., Lebowitz J. L., Ravishankar K. Approach to equilibrium in models of a system in contact with a heat bath. Preprint.

    Google Scholar 

  16. Landau L. D., Lifschitz E. M. Statistical physics. Pergamon Press, London-Paris, 1959.

    Google Scholar 

  17. Botnic, Malishev Commun. Math. Phys. ~(1983–84).

    Google Scholar 

  18. Narnhofer T., Requardt M., Thirring W. Quasi particles at finite temperature. Commun. Math. Phys. 92, 24 7 (1983).

    Google Scholar 

  19. Nogueira A. Ergodic properties of a one dimensional open system of Statistical mechanics. Preprint, 1984.

    Google Scholar 

  20. Ornstein D. S. Ergodic theory, randomness and dynamical systems. Yale University Press, New Häven and London 1974.

    Google Scholar 

  21. Reed M., Simon B. Methods of modern mathematical physics: III scattering theory. Academic Press, 1979.

    Google Scholar 

  22. Sinai Ya. G. Ergodic properties of a gas of one dimensional hard rods with an infinite number of degrees of freedom. Funct. Anal. Appl. 6, 35 (1972).

    Google Scholar 

  23. Sinai Ya. G. Construction of dynamics in one dimensional systems of Statistical mechanics. Theor. Math. Phys. 11, 248 (1972J.

    Google Scholar 

  24. Sinai Ya. G. Introduction to ergodic theory. Princeton University Press, 1977.

    Google Scholar 

  25. Sinai Ya. G., Volkovysski K. Ergodic Properties of an ideal gas with an infinite number of degrees of free-dom. Funct. Anal. Appl. 5, 19 (1971).

    Article  Google Scholar 

  26. Bowen R. Equilibrium states of the ergodic theory of Anosov diffeomorphisms. Springer, Lect. Notes in Math. 470 (1975).

    Google Scholar 

  27. Ruelle D. Thermodynamics formalism. Addison Wesley, Boston, 1978. Encyclopedia of mathematics and its ap-plications.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Presutti, E., Sinai, Y.G., Soloviechik, M.R. (1985). Hyperbolicity and Möller-Morphism for a Model of Classical Statistical Mechanics . In: Fritz, J., Jaffe, A., Szász, D. (eds) Statistical Physics and Dynamical Systems. Progress in Physics, vol 10. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6653-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6653-7_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6655-1

  • Online ISBN: 978-1-4899-6653-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics