Skip to main content

Part 6. Pressure Measurements for the Range 1 kPa to 100 μPa

  • Chapter
Book cover Experimental Thermodynamics Volume II
  • 159 Accesses

Abstract

The measurement of pressure between 1 kPa and 100μPa is complicated by the fact that the nature of the gas transport mechanism undergoes a distinct change within this range. The description of gas flow in rarefied gaseous systems is usually divided into three parts, with the division specified by the range in value of the ratio of the molecular mean free path to the characteristic dimension of the channel through which the gas passes. In the upper pressure range, for example at 1 kPa where the mean free path for all gases is less than 20 μm at 298 K, the characteristics of the flow are dominated by intermolecular collisions. Viscosity and thermal conductivity of the gases are independent of pressure; other properties such as temperature, density and flow velocity show small variation within a distance of one mean free path; therefore, the flow is hydrodynamical and viscous. In the low pressure range, for example at 100 μPa where the mean free path is of the order of 200 m at 298 K, the gas flow is characterized by molecular free flight, and transport is determined by gas-wall interactions. Discontinuities in temperature and variations in molecular flux may occur within the gas at a distance of one mean free path, and the flow is free-molecular flow. The transition from viscous to molecular flow at intermediate pressures is characterized by the influence of both types of collisions. No general derivations of flow equations are constructed from first principles for this transition range, and description is semi-empirical.

Contribution of the National Bureau of Standards, not subject to Copyright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, Y., H. Hashimoto and K. Nakayama. J. Vac. Sci., Japan, 7, 12 (1964).

    Google Scholar 

  2. Anderson, J. R. Rev. Sci. Instrum. 29, 1073 (1958).

    Article  CAS  Google Scholar 

  3. Aubry, B. and R. Delbart. Le Vide, Paris, 117, 194 (1965).

    Google Scholar 

  4. Austin, W. E. Vacuum, 19, 319 (1969).

    Article  Google Scholar 

  5. Barton, R. S. and J. N. Chubb. Vacuum, 15, 113 (1965).

    Article  Google Scholar 

  6. Bashforth, F. and J. C. Adams. An Attempt to Test the Theories of Capillary Action, Cambridge University Press: London (1883).

    Google Scholar 

  7. Beams, J. W., J. L. Young and J. W. Moore. J. Appl. Phys. 17, 886 (1946).

    Article  Google Scholar 

  8. Blaisdell, B. E. J. Math. Phys. 19, 217 (1940).

    CAS  Google Scholar 

  9. Brombacher, W. G., D. P. Johnson and J. L. Cross. US Nat. Bur. Stand. Monogr. 8 (1960).

    Google Scholar 

  10. Brombacher, W. G. US Nat. Bur. Stand. Monogr. 114 (1970).

    Google Scholar 

  11. Burden, R. S. Surface Tension and the Spreading of liquids, 2nd ed. Cambridge University Press: London (1949).

    Google Scholar 

  12. Céspiro, Z. Vakuum Tekhnik. 17, 68 (1968).

    Google Scholar 

  13. Christian, R. G. Vacuum, 16, 175 (1966).

    Article  Google Scholar 

  14. Christian, R. G. and J. H. Leek. Vacuum, 16, 299 (1966).

    Article  CAS  Google Scholar 

  15. Clark, R. J. J. Sci. Instrum. 5, 126 (1928).

    Article  CAS  Google Scholar 

  16. Colgate, S. O. and P. A. Genre. Vacuum, 18, 553 (1968).

    Article  CAS  Google Scholar 

  17. Dadson, R. S., K. W. T. Elliott and D. M. Woodman. Proceedings of the Fourth International Vacuum Congress, p 1. Institute of Physics and the Physical Society: London (1968).

    Google Scholar 

  18. Dunoyer, L. Vacuum Practice, p 68. Bell: London (1926).

    Google Scholar 

  19. Dunoyer, L. Vacuum Practice, p 91. Bell: London (1926).

    Google Scholar 

  20. Dushman, S. and J. M. Lafferty. Scientific Foundations of Vacuum Technique, 2nd ed., p 244. Wiley: New York (1962).

    Google Scholar 

  21. Edwards, T. and J. P. Hobson. J. Vac. Sci. Technol. 2, 182 (1965).

    Article  Google Scholar 

  22. Elliott, K. W. T., D. M. Woodman and R. S. Dadson. Vacuum, 17, 439 (1967).

    Article  CAS  Google Scholar 

  23. Ernsberger, F. M. and H. W. Pitman. Rev. Sci. Instrum. 26, 584 (1955).

    Article  CAS  Google Scholar 

  24. Evrard, R. and G. A. Boutry. J. Vac. Sci. Technol. 6, 279 (1969).

    Article  Google Scholar 

  25. Flanick, A. P. and J. E. Ainsworth, Rev. Sci. Instrum. 32, 408 (1961).

    Article  CAS  Google Scholar 

  26. Gaede, W. Ann. Phys., Lpz. 46, 357 (1915).

    Article  CAS  Google Scholar 

  27. Gould, F. A. and T. Vickers. J. Sci. Instrum. 29, 35 (1952).

    Article  Google Scholar 

  28. Gourjault, J. J., J. Lefévre and P. S. Choumoff. J. Vac. Sci. Technol. 9, 206 (1972).

    Article  CAS  Google Scholar 

  29. Guildner, L. A., H. F. Stimson, R. E. Edsinger and R. L. Anderson. Metrologia, 6, 1 (1970).

    Article  Google Scholar 

  30. Hirschfelder, J. O., C. F. Curtiss and R. B. Bird. Molecular Theory of Gases and Liquids. Chapman and Hall: London (1954).

    Google Scholar 

  31. Hobson, J. P. J. Vac. Sci. Technol. 6, 257 (1969).

    Article  Google Scholar 

  32. Hobson, J. P., T. Edwards and R. Verreault. Canad. J. Phys. 41, 983 (1963).

    Article  CAS  Google Scholar 

  33. Huntress, A. H., A. L. Smith, B. D. Power and N. T. M. Dennis. Transactions of the Fourth National Vacuum Symposium, p 104. American Vacuum Society/Pergamon: New York (1958).

    Google Scholar 

  34. Ishii, H. and K. Nakayama. Transactions of the Eighth Vacuum Symposium and Second International Congress of 1961, p 519. Pergamon: New York (1961).

    Google Scholar 

  35. Jansen, C. G. and A. Venema. Vacuum, 9, 219 (1959).

    Article  Google Scholar 

  36. Keevil, N. G., R. F. Errington and L. T. Newman. Rev. Sci. Instrum. 12, 609 (1941).

    Article  CAS  Google Scholar 

  37. Kennard, E. H. Kinetic Theory of Gases, p 67. McGraw-Hill: New York (1938).

    Google Scholar 

  38. Kistemaker, J. Physica, 11, 270 (1945).

    Article  CAS  Google Scholar 

  39. Klumb, H. and H. Schwarz. Z. Phys. 122, 418 (1944).

    Article  CAS  Google Scholar 

  40. Knudsen, M. Ann. Phys., Lpz. 33, 1435 (1910); 83, 797 (1927).

    Article  Google Scholar 

  41. Knudsen, M. Ann. Phys., Lpz. 44, 525 (1914).

    Article  CAS  Google Scholar 

  42. Laplace, P. Traité de Mécanique Céleste. 10, 64. Duprat: Paris (1798, 1823).

    Google Scholar 

  43. Laplace, P. Oeuvres Completes. 4, 349. Gauthier-Villars: Paris (1880).

    Google Scholar 

  44. Leck, J. M. Pressure Measurement in Vacuum Systems, 2nd ed., p 35. Chapman and Hall: London (1964).

    Google Scholar 

  45. Liang, S. C. J. Appl. Phys. 22, 148 (1952); J. Phys. Chem. 57, 910 (1953).

    Article  Google Scholar 

  46. Maxwell, J. C. Phil. Trans. Roy. Soc, London, 170, 231 (1879).

    Article  Google Scholar 

  47. McLeod, H. Phil. Mag. 48, 110 (1874).

    Google Scholar 

  48. Meinke, C. and G. Reich. Vakuum-Technik, 12, 79 (1963); 11, 86 (1962); Vacuum, 13, 579 (1963).

    CAS  Google Scholar 

  49. Meinke, C. and G. Reich. J. Vac. Sci. Technol. 4, 356 (1967).

    Article  CAS  Google Scholar 

  50. Muendel, C. F. Z. Phys. Chem. 85, 435 (1913).

    Google Scholar 

  51. Nakayama, K. Jap. J. Appl. Phys. 7, 1114 (1968).

    Article  CAS  Google Scholar 

  52. Neumann, C. S.B. Akad. Wiss. Wien, Abt. IIa, 24, 49 (1872).

    Google Scholar 

  53. Nottingham, W. B. and F. L. Torney Jr. Transactions of the Seventh National Vacuum Symposium, p 117. American Vacuum Society/Pergamon: New York (1961).

    Google Scholar 

  54. Podgurski, H. H. and F. N. Davis. Vacuum, 10, 377 (1960).

    Article  CAS  Google Scholar 

  55. Podgurski, H. H. and F. N. Davis. J. Phys. Chem. 65, 1343 (1961).

    Article  CAS  Google Scholar 

  56. Rambeau, G. Le Vide, Paris, 24, 219 (1969).

    CAS  Google Scholar 

  57. Reynolds, O. Phil. Trans. Roy. Soc. London, 170, 727 (1879).

    Article  Google Scholar 

  58. Rosenberg, P. Rev. Sci. Instrum. 9, 258 (1938).

    Article  Google Scholar 

  59. Rothe, E. W. J. Vac. Sci. Technol. 1, 66 (1964).

    Article  CAS  Google Scholar 

  60. Rusch, M. and O. Bunge. Z. Tech. Phys. 13, 77 (1932).

    CAS  Google Scholar 

  61. Ruthberg, S. J. Vac. Sci. Technol. 6, 401 (1969).

    Article  Google Scholar 

  62. Schuhmann, S. Transactions of the Ninth National Vacuum Symposium, p 493. American Vacuum Society/Macmillan: New York (1962).

    Google Scholar 

  63. Siu, M. C. I. J. Res. Nat. Bur. Stand. 73A, 611 (1969).

    Article  Google Scholar 

  64. Smetana, F. O. and C. T. Carley Jr. J. Vac. Sci. Technol 3, 49 (1966).

    Article  Google Scholar 

  65. Stevenson, W. H. and P. W. McFadden. Rev. Sci. Instrum. 36, 1272 (1965).

    Article  CAS  Google Scholar 

  66. Stillman, M. H. Sci. Pap. US Nat. Bur. Stand. 10, 371 (1914).

    Google Scholar 

  67. Takaishi, T. Trans. Faraday Soc. 61, 840 (1965).

    Article  CAS  Google Scholar 

  68. Takaishi, T. and Y. Sensui. Vacuum, 20, 495 (1970).

    Article  CAS  Google Scholar 

  69. Thomas, A. M. and J. L. Cross. J. Vac. Sci. Technol. 4, 1 (1967).

    Article  CAS  Google Scholar 

  70. Thomas, A. M., D. P. Johnson and J. W. Little. Transactions of the Ninth National Vacuum Symposium, p 468. American Vacuum Society/Macmillan: New York (1962).

    Google Scholar 

  71. Tunnicliffe, R. J. and J. A. Rees. Vacuum, 17, 457 (1967).

    Article  CAS  Google Scholar 

  72. Vermandé, M. J. Le Vide, Paris, 7, 1145 (1952).

    Google Scholar 

  73. de Vries, A. E. and P. K. Rol. Vacuum, 15, 135 (1965).

    Article  Google Scholar 

  74. Weber, S. and G. Schmidt. Commun. Kamerlingh Onnes Lab., Leiden, 246c, 11 (1936).

    Google Scholar 

  75. Wetterer, G. Z. Tech. Phys. 20, 281 (1939).

    CAS  Google Scholar 

  76. Wu, Y. Ann. Phys., Lpz. 18, 321 (1966).

    Article  CAS  Google Scholar 

  77. Young, T. Miscellaneous Works, 1, 418 (1805).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ruthberg, S. (1968). Part 6. Pressure Measurements for the Range 1 kPa to 100 μPa. In: Le Neindre, B., Vodar, B. (eds) Experimental Thermodynamics Volume II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6569-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6569-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6263-8

  • Online ISBN: 978-1-4899-6569-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics