Skip to main content

Part 3. Piston Gages

  • Chapter
  • 161 Accesses

Abstract

The early seventeenth century was a time of great progress in science and it is perhaps not surprising that the great contemporaries Galileo, Descartes, Boyle, and many others devoted some of their time to the study of the properties of the atmosphere. In 1644 Torricelli described his famous measurement of atmospheric pressure in a letter50 to his friend Michelangelo Ricci. Within 25 years followed the famous experiments by Pascal and Perier (1648), Guericke (1672) and Boyle (1669). One hundred years later, in 1764, James Watt began to lay the foundation for the Steam Tables by making the first careful measurements of the properties of steam. During this time mercury manometers were used to determine pressure. About 1800 Richard Trevithik built the first high pressure steam engine which proved to be much more efficient than Watt’s and Newcomen’s machines; from then on new types of gages were required to cover the pressure range of interest for industrial applications. In 1846 the German railway engineer Schinz34 had discovered that a curved tube of elliptical cross section would change its curvature when subjected to internal pressure and by 1848 steam pressure gages based on this principle were in use on locomotives in Germany19. In 1847 both Schinz46 and Bourdon6 patented devices which are now universally known as Bourdon gages. In 1846 Galy-Cazalat20 described the first piston manometer, a combination of mercury manometer and hydraulic multiplier.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a, a*:

transducer coefficient

b 1, b*:

transducer coefficient

b, b 1, b 2 :

pressure coefficient of area

c 1, c :

transducer coefficient

d 1, d*:

transducer coefficient

d:

jacket pressure coefficient

g:

acceleration due to gravity

g ø :

acceleration due to gravity, at sea-level

g l :

acceleration due to gravity, local

g:

ratio of shear moduli

h:

halfwidth of radial clearance

k:

ratio of elastic moduli

l:

length of clearance or engagement

p:

pressure

p bar :

pressure, barometric

p c :

pressure, inside clearance

p e :

pressure, on end face of piston or cylinder

p j :

jacket pressure

p sat :

saturation pressure

p zo :

zero clearance jacket pressure

q z :

clearance versus jacket pressure coefficient

r:

radius

rc :

radius, internal, cylinder

rp :

radius, piston

s:

piston position

s z :

zero clearance jacket pressure coefficient

u:

increase in piston diameter

u:

voltage

x:

reduction coefficient

y:

reduction coefficient

z:

coordinate along cylinder axis

A:

area

A c :

area of cylinder

A eff :

area, effective

A 0 :

area, effective, at zero pressure

A p :

area of piston

B:

temperature coefficient of saturation pressure

C:

circumference of piston

C:

constant

C b :

pressure correction

C d :

jacket pressure correction

C t :

temperature correction

C z :

clearance correction

D:

jacket pressure coefficient

E:

jacket pressure coefficient

E:

Young's modulus

E 0,E 1, E 2 :

temperature coefficient of saturation pressure

F:

force

F:

jacket pressure coefficient

H:

halfwidth of clearance

H:

relative humidity

H:

difference in reference levels

M:

mass

Q:

leak rate

R c :

outer radius of cylinder

T:

tare

T:

gage temperature

T ref :

reference temperature

T w :

tare weight

U:

increase in internal cylinder diameter

V:

volume

W:

weight

αp :

thermal expansivity of piston

αc :

thermal expansivity of cylinder

γ:

surface tension

η:

viscosity

θ =:

(3μ − 1)/2E

λ:

pressure coefficient of area

ρ air :

density of air

ρ fl :

density of fluid

ρ Mi.:

density of weight i

ø:

latitude, geographical

VIII. References

  1. Almer, H. E., Tech. Note US Nat Bur. Stand. No. 577 (1971), S. C. Cont. No. C13.46:577, Government Printing Office: Washington, DC 20402.

    Google Scholar 

  2. Amagat, E. H., Ann. Chim. (Phys.), 29, 70 (1893).

    Google Scholar 

  3. Aronson, M. H., Editor, ‘Dead weight testers’. Measurements and Data, 30, 72 (1971).

    Google Scholar 

  4. Bennett, C. O. and B. Vodar. High-Pressure Measurement Symposium, American Society of Mechanical Engineers: New York (November 1962); Butterworths: Washington, DC (1963).

    Google Scholar 

  5. Bett, K. E., P. F. Hayes and D. M. Newitt. Phil Trans. Roy. Soc. (London), 247, 59 (1954).

    Article  Google Scholar 

  6. Bourdon, E. French Pat. No. 4408 (1849).

    Google Scholar 

  7. Bowman, H. A. and R. M. Schoonover. J. Res. Nat. Bur. Stand. 71C, 179 (1967).

    Google Scholar 

  8. Bridgman, P. W., Proc. Amer. Acad. Arts Sci. 44, 201 (1908).

    Article  Google Scholar 

  9. Bridgman, P. W., Proc. Amer. Acad. Arts Sci. 47, 321 (1911).

    Article  Google Scholar 

  10. Bridgman, P. W., Proc. Amer. Acad. Arts Sci. 72, 207 (1938).

    Article  CAS  Google Scholar 

  11. Caw, W. A., J. Sci. Instrum. Ser. 2, 2, 73 (1969).

    Google Scholar 

  12. Cross, J. L., ‘Piston manometer’, Monogr. US Nat. Bur. Stand. No. 65, Government Printing Office: Washington, DC (1964).

    Google Scholar 

  13. Dadson, R. S., Nature, London, 176, 188 (1955).

    Article  CAS  Google Scholar 

  14. Dadson, R. S., R. G. P. Greig and A. Horner. Metrologia, 1, 55 (1965).

    Article  Google Scholar 

  15. Dadson, R. S. and R. C. P. Greig. J. Sci. Instrum. 42, 331 (1965).

    Article  Google Scholar 

  16. Dadson, R. S. and R. C. P. Greig. Brit. J. Appl. Phys. 16, 1711 (1965).

    Article  CAS  Google Scholar 

  17. Desgoffe, C., Sucr. Indig. Colon. 6, 151 (1871).

    Google Scholar 

  18. Ebert, H., Z. Angew. Phys. 1, 331 (1949).

    Google Scholar 

  19. Eisenbahn Zeitung, 7, (March and April 1849).

    Google Scholar 

  20. Galy-Cazalat, M., Bull. Soc. Enc. Industr. Nat. Paris, p 590 (November 1846).

    Google Scholar 

  21. Guildner, L. A., H. F. Stimson, R. E. Edsinger and R. L. Anderson. Metrologia, 6, 1 (1970).

    Article  Google Scholar 

  22. Handbook of Chemistry and Physics, F9 (52nd edition). Chemical Rubber Publishing Company: Cleveland, Ohio (1971).

    Google Scholar 

  23. Heydemann, P. L. M., J. Appl. Phys. 38, 2640 (1967).

    Article  CAS  Google Scholar 

  24. Heydemann, P. L. M. and J. C. Houck. J. Appl. Phys. 40, 1609 (1969).

    Article  CAS  Google Scholar 

  25. Heydemann, P. L. M., Procédés du Colloque International sur les Propriétés Physiques des Solides sous Pression, Grenoble (1969).

    Google Scholar 

  26. Hogben, D., S. T. Peavey and R. N. Varner. ‘Omnitab II’. Tech. Note US Nat. Bur. Stand. No. 552 Government Printing Office: Washington, DC 20402 (1971).

    Google Scholar 

  27. Holborn, L. and H. Schultze. Ann. Phys., Lpz. 47, 1089 (1915).

    Article  CAS  Google Scholar 

  28. Hutton, U. O., J. Res. Nat. Bur. Stand. 63C, 47 (1959).

    Google Scholar 

  29. Jayaraman, A., A. R. Hutson, J. H. McFee, A. S. Coriell and R. G. Maines. Rev. Sci. Instrum. 38, 44 (1967).

    Article  CAS  Google Scholar 

  30. Johnson, D. P. and D. H. Newhall. Trans. Amer. Soc. Mech. Engrs, 75, 301 (1953).

    CAS  Google Scholar 

  31. Johnson, D. P., J. L. Cross, J. D. Hill and A. H. Bowman. Industr. Engng Chem. 49, 2046 (1957).

    Article  CAS  Google Scholar 

  32. Johnson, D. P. and P. L. M. Heydemann. Rev. Sci. Instrum. 38, 1294 (1967).

    Article  Google Scholar 

  33. Kennedy, G. C. and P. N. LaMori. In Progress in Very High Pressure Research, Wiley: New York (1961).

    Google Scholar 

  34. Knowles Middleston, W. E. The History of the Barometer, John Hopkins Press: Baltimore (1964).

    Google Scholar 

  35. Konyaev, Yu. S., Prib. Tekh. Eksp. 4, 107 (1961).

    Google Scholar 

  36. Markus, W., Rev. Sci. Instrum. 43, 158 (1972).

    Article  Google Scholar 

  37. Meyers, C. H. and R. S. Jessup. J. Res. Nat. Bur. Stand. 6, 1061 (1931).

    CAS  Google Scholar 

  38. Michels, A., Ann. Phys., Lpz. 72, 285 (1923).

    Article  Google Scholar 

  39. Michels, A., Ann. Phys., Lpz. 73, 577 (1924).

    Article  Google Scholar 

  40. Handbook US Nat. Bur. Stand. No. 77, Vol. III, ‘Precision measurement and calibration’, Government Printing Office: Washington, DC (1961).

    Google Scholar 

  41. Newhall, D. H., US Pat. No. 2796229 (18 June 1957).

    Google Scholar 

  42. Newhall, D. H., US Pat. Appl. (1971).

    Google Scholar 

  43. Newhall, D. H. and L. H. Abbot. Measurements and Data, 19, 90 (1970).

    Google Scholar 

  44. PTR, Bericht über die Tätigkeit der, Z. Instrumentenkunde, 14, 301 (1894).

    Google Scholar 

  45. Ruchholz, E., German Pat. Kl.42 No. 18626 (19 January 1882).

    Google Scholar 

  46. Schinz, G., Prussian Pat. No. 3 (1849).

    Google Scholar 

  47. Seyss, L., Z. Österr. Ing. Archit. Vereins, 25, (1869).

    Google Scholar 

  48. Smithsonian Meteorological Tables, 6th ed. Smithsonian Institution: Washington, DC (1951).

    Google Scholar 

  49. Tate, D. R., J. Res. Nat. Bur. Stand., 72C, 1 (1968).

    Google Scholar 

  50. Torricelli, Evangelista. Opere, eds. G. Loria and G. Vassura. Faenza (1919).

    Google Scholar 

  51. Vereshchagin, L. F., E. V. Zubova, I. P. Buimova and K. P. Burdina. Dokl. Akad. Nauk SSSR, 169, 74 (1966).

    Google Scholar 

  52. Wexler, A. and L. Greenspan. J. Res. Nat. Bur. Stand., 75A, 213 (1971).

    Article  Google Scholar 

  53. Wiebe, H. F., Z. compr. flussige Gase, 1, 1 (1897).

    Google Scholar 

  54. Wylie, P., private communication (1969).

    Google Scholar 

  55. Zhokhovskii, M. K., Theory and Design of Instruments with Packing-free Pistons (in Russian). Moscow (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heydemann, P.L.M., Welch, B.E. (1968). Part 3. Piston Gages. In: Le Neindre, B., Vodar, B. (eds) Experimental Thermodynamics Volume II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6569-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6569-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6263-8

  • Online ISBN: 978-1-4899-6569-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics