Advertisement

Part 3. Piston Gages

  • P. L. M. Heydemann
  • B. E. Welch

Abstract

The early seventeenth century was a time of great progress in science and it is perhaps not surprising that the great contemporaries Galileo, Descartes, Boyle, and many others devoted some of their time to the study of the properties of the atmosphere. In 1644 Torricelli described his famous measurement of atmospheric pressure in a letter50 to his friend Michelangelo Ricci. Within 25 years followed the famous experiments by Pascal and Perier (1648), Guericke (1672) and Boyle (1669). One hundred years later, in 1764, James Watt began to lay the foundation for the Steam Tables by making the first careful measurements of the properties of steam. During this time mercury manometers were used to determine pressure. About 1800 Richard Trevithik built the first high pressure steam engine which proved to be much more efficient than Watt’s and Newcomen’s machines; from then on new types of gages were required to cover the pressure range of interest for industrial applications. In 1846 the German railway engineer Schinz34 had discovered that a curved tube of elliptical cross section would change its curvature when subjected to internal pressure and by 1848 steam pressure gages based on this principle were in use on locomotives in Germany19. In 1847 both Schinz46 and Bourdon6 patented devices which are now universally known as Bourdon gages. In 1846 Galy-Cazalat20 described the first piston manometer, a combination of mercury manometer and hydraulic multiplier.

List of Symbols

a, a*

transducer coefficient

b1, b*

transducer coefficient

b, b1, b2

pressure coefficient of area

c1, c

transducer coefficient

d1, d*

transducer coefficient

d

jacket pressure coefficient

g

acceleration due to gravity

gø

acceleration due to gravity, at sea-level

gl

acceleration due to gravity, local

g

ratio of shear moduli

h

halfwidth of radial clearance

k

ratio of elastic moduli

l

length of clearance or engagement

p

pressure

pbar

pressure, barometric

pc

pressure, inside clearance

pe

pressure, on end face of piston or cylinder

pj

jacket pressure

psat

saturation pressure

pzo

zero clearance jacket pressure

qz

clearance versus jacket pressure coefficient

r

radius

rc

radius, internal, cylinder

rp

radius, piston

s

piston position

sz

zero clearance jacket pressure coefficient

u

increase in piston diameter

u

voltage

x

reduction coefficient

y

reduction coefficient

z

coordinate along cylinder axis

A

area

Ac

area of cylinder

Aeff

area, effective

A0

area, effective, at zero pressure

Ap

area of piston

B

temperature coefficient of saturation pressure

C

circumference of piston

C

constant

Cb

pressure correction

Cd

jacket pressure correction

Ct

temperature correction

Cz

clearance correction

D

jacket pressure coefficient

E

jacket pressure coefficient

E

Young's modulus

E0,E1, E2

temperature coefficient of saturation pressure

F

force

F

jacket pressure coefficient

H

halfwidth of clearance

H

relative humidity

H

difference in reference levels

M

mass

Q

leak rate

Rc

outer radius of cylinder

T

tare

T

gage temperature

Tref

reference temperature

Tw

tare weight

U

increase in internal cylinder diameter

V

volume

W

weight

αp

thermal expansivity of piston

αc

thermal expansivity of cylinder

γ

surface tension

η

viscosity

θ =

(3μ − 1)/2E

λ

pressure coefficient of area

ρair

density of air

ρfl

density of fluid

ρMi.

density of weight i

ø

latitude, geographical

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VIII. References

  1. 1.
    Almer, H. E., Tech. Note US Nat Bur. Stand. No. 577 (1971), S. C. Cont. No. C13.46:577, Government Printing Office: Washington, DC 20402.Google Scholar
  2. 2.
    Amagat, E. H., Ann. Chim. (Phys.), 29, 70 (1893).Google Scholar
  3. 3.
    Aronson, M. H., Editor, ‘Dead weight testers’. Measurements and Data, 30, 72 (1971).Google Scholar
  4. 4.
    Bennett, C. O. and B. Vodar. High-Pressure Measurement Symposium, American Society of Mechanical Engineers: New York (November 1962); Butterworths: Washington, DC (1963).Google Scholar
  5. 5.
    Bett, K. E., P. F. Hayes and D. M. Newitt. Phil Trans. Roy. Soc. (London), 247, 59 (1954).CrossRefGoogle Scholar
  6. 6.
    Bourdon, E. French Pat. No. 4408 (1849).Google Scholar
  7. 7.
    Bowman, H. A. and R. M. Schoonover. J. Res. Nat. Bur. Stand. 71C, 179 (1967).Google Scholar
  8. 8.
    Bridgman, P. W., Proc. Amer. Acad. Arts Sci. 44, 201 (1908).CrossRefGoogle Scholar
  9. 9.
    Bridgman, P. W., Proc. Amer. Acad. Arts Sci. 47, 321 (1911).CrossRefGoogle Scholar
  10. 10.
    Bridgman, P. W., Proc. Amer. Acad. Arts Sci. 72, 207 (1938).CrossRefGoogle Scholar
  11. 11.
    Caw, W. A., J. Sci. Instrum. Ser. 2, 2, 73 (1969).Google Scholar
  12. 12.
    Cross, J. L., ‘Piston manometer’, Monogr. US Nat. Bur. Stand. No. 65, Government Printing Office: Washington, DC (1964).Google Scholar
  13. 13.
    Dadson, R. S., Nature, London, 176, 188 (1955).CrossRefGoogle Scholar
  14. 14.
    Dadson, R. S., R. G. P. Greig and A. Horner. Metrologia, 1, 55 (1965).CrossRefGoogle Scholar
  15. 15.
    Dadson, R. S. and R. C. P. Greig. J. Sci. Instrum. 42, 331 (1965).CrossRefGoogle Scholar
  16. 16.
    Dadson, R. S. and R. C. P. Greig. Brit. J. Appl. Phys. 16, 1711 (1965).CrossRefGoogle Scholar
  17. 17.
    Desgoffe, C., Sucr. Indig. Colon. 6, 151 (1871).Google Scholar
  18. 18.
    Ebert, H., Z. Angew. Phys. 1, 331 (1949).Google Scholar
  19. 19.
    Eisenbahn Zeitung, 7, (March and April 1849).Google Scholar
  20. 20.
    Galy-Cazalat, M., Bull. Soc. Enc. Industr. Nat. Paris, p 590 (November 1846).Google Scholar
  21. 21.
    Guildner, L. A., H. F. Stimson, R. E. Edsinger and R. L. Anderson. Metrologia, 6, 1 (1970).CrossRefGoogle Scholar
  22. 22.
    Handbook of Chemistry and Physics, F9 (52nd edition). Chemical Rubber Publishing Company: Cleveland, Ohio (1971).Google Scholar
  23. 23.
    Heydemann, P. L. M., J. Appl. Phys. 38, 2640 (1967).CrossRefGoogle Scholar
  24. 24.
    Heydemann, P. L. M. and J. C. Houck. J. Appl. Phys. 40, 1609 (1969).CrossRefGoogle Scholar
  25. 25.
    Heydemann, P. L. M., Procédés du Colloque International sur les Propriétés Physiques des Solides sous Pression, Grenoble (1969).Google Scholar
  26. 26.
    Hogben, D., S. T. Peavey and R. N. Varner. ‘Omnitab II’. Tech. Note US Nat. Bur. Stand. No. 552 Government Printing Office: Washington, DC 20402 (1971).Google Scholar
  27. 27.
    Holborn, L. and H. Schultze. Ann. Phys., Lpz. 47, 1089 (1915).CrossRefGoogle Scholar
  28. 28.
    Hutton, U. O., J. Res. Nat. Bur. Stand. 63C, 47 (1959).Google Scholar
  29. 29.
    Jayaraman, A., A. R. Hutson, J. H. McFee, A. S. Coriell and R. G. Maines. Rev. Sci. Instrum. 38, 44 (1967).CrossRefGoogle Scholar
  30. 30.
    Johnson, D. P. and D. H. Newhall. Trans. Amer. Soc. Mech. Engrs, 75, 301 (1953).Google Scholar
  31. 31.
    Johnson, D. P., J. L. Cross, J. D. Hill and A. H. Bowman. Industr. Engng Chem. 49, 2046 (1957).CrossRefGoogle Scholar
  32. 32.
    Johnson, D. P. and P. L. M. Heydemann. Rev. Sci. Instrum. 38, 1294 (1967).CrossRefGoogle Scholar
  33. 33.
    Kennedy, G. C. and P. N. LaMori. In Progress in Very High Pressure Research, Wiley: New York (1961).Google Scholar
  34. 34.
    Knowles Middleston, W. E. The History of the Barometer, John Hopkins Press: Baltimore (1964).Google Scholar
  35. 35.
    Konyaev, Yu. S., Prib. Tekh. Eksp. 4, 107 (1961).Google Scholar
  36. 36.
    Markus, W., Rev. Sci. Instrum. 43, 158 (1972).CrossRefGoogle Scholar
  37. 37.
    Meyers, C. H. and R. S. Jessup. J. Res. Nat. Bur. Stand. 6, 1061 (1931).Google Scholar
  38. 38.
    Michels, A., Ann. Phys., Lpz. 72, 285 (1923).CrossRefGoogle Scholar
  39. 39.
    Michels, A., Ann. Phys., Lpz. 73, 577 (1924).CrossRefGoogle Scholar
  40. 40.
    Handbook US Nat. Bur. Stand. No. 77, Vol. III, ‘Precision measurement and calibration’, Government Printing Office: Washington, DC (1961).Google Scholar
  41. 41.
    Newhall, D. H., US Pat. No. 2796229 (18 June 1957).Google Scholar
  42. 42.
    Newhall, D. H., US Pat. Appl. (1971).Google Scholar
  43. 43.
    Newhall, D. H. and L. H. Abbot. Measurements and Data, 19, 90 (1970).Google Scholar
  44. 44.
    PTR, Bericht über die Tätigkeit der, Z. Instrumentenkunde, 14, 301 (1894).Google Scholar
  45. 45.
    Ruchholz, E., German Pat. Kl.42 No. 18626 (19 January 1882).Google Scholar
  46. 46.
    Schinz, G., Prussian Pat. No. 3 (1849).Google Scholar
  47. 47.
    Seyss, L., Z. Österr. Ing. Archit. Vereins, 25, (1869).Google Scholar
  48. 48.
    Smithsonian Meteorological Tables, 6th ed. Smithsonian Institution: Washington, DC (1951).Google Scholar
  49. 49.
    Tate, D. R., J. Res. Nat. Bur. Stand., 72C, 1 (1968).Google Scholar
  50. 50.
    Torricelli, Evangelista. Opere, eds. G. Loria and G. Vassura. Faenza (1919).Google Scholar
  51. 51.
    Vereshchagin, L. F., E. V. Zubova, I. P. Buimova and K. P. Burdina. Dokl. Akad. Nauk SSSR, 169, 74 (1966).Google Scholar
  52. 52.
    Wexler, A. and L. Greenspan. J. Res. Nat. Bur. Stand., 75A, 213 (1971).CrossRefGoogle Scholar
  53. 53.
    Wiebe, H. F., Z. compr. flussige Gase, 1, 1 (1897).Google Scholar
  54. 54.
    Wylie, P., private communication (1969).Google Scholar
  55. 55.
    Zhokhovskii, M. K., Theory and Design of Instruments with Packing-free Pistons (in Russian). Moscow (1959).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • P. L. M. Heydemann
    • 1
  • B. E. Welch
    • 1
  1. 1.National Bureau of StandardsWashington, DCUSA

Personalised recommendations