Advertisement

Electrical Discharge Techniques for Measurements of Thermodynamic Properties of Fluids at High Temperatures

  • Ared Cezairliyan
  • Charles W. Beckett

Abstract

Increasing interest in understanding the behavior of matter at high temperatures and demand for properties in applications related to aerospace, nuclear, and other high temperature fields necessitate the development of new techniques that can extend the measurements to temperatures above 2 500 K, the limit of accurate conventional (steady-state and quasi steady-state) methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VII. References

  1. 1.
    Alcock, A. J., M. C. Richardson and K. Leopold. Rev. Sci. Instrum. 41, 1028 (1970).Google Scholar
  2. 2.
    Amsel, G. and C. Zajde. Rev. Sci. Instrum. 35, 1538 (1964).Google Scholar
  3. 3.
    Anderson, L. K. and B. J. McMurtry. Applied Optics, 5, 1573 (1966).Google Scholar
  4. 4.
    Andreev, S. I. and M. P. Vanyukov. Soviet Phys-Tech. Phys. 9, 1443 (1965).Google Scholar
  5. 5.
    Andreev, S. I. and R. A. Liukonen. Instruments and Experimental Techniques (USSR), No. 3, 868 (1970).Google Scholar
  6. 6.
    Avellone, J. C., P, L. Byard and F. L. Damm. Rev. Sci. Instrum. 38, 1808 (1967).Google Scholar
  7. 7.
    Ayers, J. D. and W. C. Barnes. Rev. Sci. Instrum. 42, 302 (1971).Google Scholar
  8. 8.
    Beckett, C. W. and A. Cezairliyan, ‘High-speed thermodynamic measurements and related techniques’, in Experimental Thermodynamics, Vol. I. Calorimetry of Non-Reacting Systems, p 551. J. P. McCullough and D. W. Scott, eds. Butterworths: London (1968).Google Scholar
  9. 9.
    Belkin, V. M. and A. A. Lukashev. Instruments and Experimental Techniques (USSR), No. 6, 1231 (1964).Google Scholar
  10. 10.
    Ben-Yosef, N. and A. G. Rubin. Phys. Rev. Letters, 23, 289 (1969).Google Scholar
  11. 11.
    Bennett, F. D., Physics of Fluids, 9, 471 (1966).Google Scholar
  12. 12.
    Bennett, F. D., J. Appl. Phys. 42, 2835 (1971).Google Scholar
  13. 13.
    Bennett, F. K. and G. G. Klotz, ‘A high-speed data acquisition system’, in Proceedings of the Symposium on Engineering Problems of Controlled Thermonuclear Research, p 91. Lawrence Radiation Laboratory, Livermore, California (1965).Google Scholar
  14. 14.
    Berezin, B. Ya., V. Ya. Chekhovskoi and A. E. Sheindlin. High Temp. High Press. 3, 287 (1971).Google Scholar
  15. 15.
    Bhat, B. K. and I. B. Jordan. J. Appl. Phys. 42, 809 (1971).Google Scholar
  16. 16.
    Bird, G. R, R. G. Jones and A. E. Ames. Applied Optics, 8, 2389 (1969).Google Scholar
  17. 17.
    Bishop, A. E. and G. D. Edmonds. J. Sci. Instrum. (J. Phys. E), 2, 414 (1969).Google Scholar
  18. 18.
    Bless, S. J. J. Appl. Phys. 43, 1580 (1972).Google Scholar
  19. 19.
    Brixner, B., Rev. Sci. Instrum. 36, 1297 (1965).Google Scholar
  20. 20.
    Broadbent, T. E., Brit. J. Appl. Phys. 15, 97 (1964).Google Scholar
  21. 21.
    Calker, J. van and W. Erb. Z. Angew. Phys. 26, 291 (1969).Google Scholar
  22. 22.
    Cassidy, E. G., S. W. Zimmerman and K. K. Neumann. Rev. Sci. Instrum. 37, 210 (1966).Google Scholar
  23. 23.
    Cassidy, E. G., S. Abramowitz and C. W. Beckett. US Nat. Bur. Stand. Monogr. No. 109 (1968).Google Scholar
  24. 24.
    Cassidy, E. G., H. N. Cones and S. R. Booker. IEEE Trans, on Instrum. and Meas. 19, 395 (1970).Google Scholar
  25. 25.
    Cassidy, E. G. and S. Abramowitz. Appl. Spectrosc. 21, 360 (1967).Google Scholar
  26. 26.
    Cezairliyan, A., High Temp. High Press. 2, 501 (1970).Google Scholar
  27. 27.
    Cezairliyan, A., J. Res. Nat. Bur. Stand. 75C (Eng. and Instr.), 7 (1971).Google Scholar
  28. 28.
    Cezairliyan, A. J. Res. Nat. Bur. Stand. 75A (Phys. and Chem.), 565 (1971).Google Scholar
  29. 29.
    Cezairliyan, A., Applied Optics, 10, 1178 (1971).Google Scholar
  30. 30.
    Cezairliyan, A., High Temp. High Press. 4, 453 (1972).Google Scholar
  31. 31.
    Cezairliyan, A., High Temperature Science, 4, 248 (1972)Google Scholar
  32. 32.
    Cezairliyan, A., ‘Measuring transient high temperatures by optical pyrometry’, in Temperature, Vol. IV, p 657. H. H. Plumb, ed. Instrument Society of America: Pittsburgh (1972).Google Scholar
  33. 33.
    Cezairliyan, A., in preparation.Google Scholar
  34. 34.
    Cezairliyan, A., M. S. Morse, H. A. Berman and C. W. Beckett, J. Res. Nat. Bur. Stand. 74A (Phys. and Chem.), 65 (1970).Google Scholar
  35. 35.
    Cezairliyan, A., M. S. Morse and C. W. Beckett. Rev. Int. Hautes Tempér, et Réfract. 7, 382 (1970).Google Scholar
  36. 36.
    Cezairliyan, A., J. L. McClure and C. W. Beckett, J. Res. Nat. Rur. Stand. 75A (Phys. and Chem.), 1 (1971).Google Scholar
  37. 37.
    Cezairliyan, A. and J. L. McClure. J. Res. Nat. Bur. Stand. 75A (Phys. and Chem.), 283 (1971).Google Scholar
  38. 38.
    Chace, W. G. and C. V. Fish, J. Appl. Phys. 38, 3986 (1967).Google Scholar
  39. 39.
    Chace, W. G. and H. K. Moore, eds. Exploding Wires, Plenum: New York, Vol. III (1964), Vol. IV (1968).Google Scholar
  40. 40.
    Chaney, N. K., V. C. Hamister and S. W. Glass. Trans. Electrochem. Soc. 67, 107 (1935).Google Scholar
  41. 41.
    Chaudhuri, A. K., D. W. Bonnell, L. A. Ford and J. L. Margrave. High Temperature Science, 2, 203 (1970).Google Scholar
  42. 42.
    Chekhovskoi, V. Ya., A. E. Sheindlin and B. Ya. Berezin. High Temp. High Press. 2, 301 (1970).Google Scholar
  43. 43.
    Creed, F. C., M. M. C. Collins, Aa. Pedersen and P. Lausen. IEEE Trans, on Power Apparatus and Systems, 91, 485 (1972).Google Scholar
  44. 44.
    Davies, T. J. Rev. Sci. Instrum. 41, 920 (1970).Google Scholar
  45. 45.
    De Maria, A. J., D. A. Stetser and W. H. Glenn Jr. Science, 156, 1557 (1967).Google Scholar
  46. 46.
    Dewhurst, R. J., G. J. Pert and S. A. Ramsden. J. Phys. D: Appl. Phys. 5, 97 (1972).Google Scholar
  47. 47.
    DiDomenico, M., W. M. Sharpless and J. J. McNicol. Applied Optics, 4, 677 (1965).Google Scholar
  48. 48.
    Dike, R. S. and E. L. Kemp. Rev. Sci. Instrum. 36, 1256 (1965).Google Scholar
  49. 49.
    Dikhter, I. Ya. and S. V. Lebedev. High Temp. High Press. 2, 55 (1970).Google Scholar
  50. 50.
    Dikhter, I. Ya. and S. V. Lebedev. High Temperature, 9, 845 (1971).Google Scholar
  51. 51.
    Drawin, H. W., High Temp. High Press. 2, 359 (1970).Google Scholar
  52. 52.
    Duguay, M. A. and A. T. Mattick. Applied Optics, 10, 2162 (1971).Google Scholar
  53. 53.
    Dunn, M. H. and A. Maitland. J. Sci. Instrum. 44, 555 (1967).Google Scholar
  54. 54.
    Emel’yanov, Yu. M., V. G. Babayan and Z. I. Ashurly. Soviet Phys.-Tech. Phys. 14, 933 (1970).Google Scholar
  55. 55.
    Erb, W., Z. Angew. Phys. 26, 295 (1969).Google Scholar
  56. 56.
    Erb, W. and J. van Calker, Z. Angew. Phys. 31, 71 (1971).Google Scholar
  57. 57.
    Foley, G. M. Rev. Sci. Instrum. 41, 827 (1970).Google Scholar
  58. 58.
    Forgacs, R. L. Rev. Sci. Instrum. 43, 302 (1972).Google Scholar
  59. 59.
    Fralick, R. D. and E. C. Zipf. Rev. Sci. Instrum. 41, 47 (1970).Google Scholar
  60. 60.
    Früngel, F. High-Speed Pulse Technology, Volumes I and II. Academic Press: New York (1965).Google Scholar
  61. 61.
    Gol’ts, E. Ya. and N. P. Sadkovich. JETP (Letters), 2, 288 (1965).Google Scholar
  62. 62.
    Graham, M. E., R. E. Wengler and D. V. Keller. Instrum. Soc. Amer. Trans. 9, 133 (1970).Google Scholar
  63. 63.
    Griem, H. R. Plasma Spectroscopy, McGraw-Hill: New York (1964).Google Scholar
  64. 64.
    Grosse, A. V., J. A. Cahill, W. L. Liddell, W. J. Murphy and C. S. Stokes. Science, 160, 528 (1968).Google Scholar
  65. 65.
    Grover, F. W. Inductance Calculations, Van Nostrand: New York (1946).Google Scholar
  66. 66.
    Hanson, R. K. Rev. Sci. Instrum. 43, 394 (1972).Google Scholar
  67. 67.
    Harada, T., T. Kawamura, K. Kishi, Y. Aoshima, N. Ohira, K. Takigami and Y. Horiko. IEEE Trans, on Power Apparatus and Systems, 91, 494 (1972).Google Scholar
  68. 68.
    Harraway, R. A. J. Sci. Instrum. 41, 399 (1964).Google Scholar
  69. 69.
    Hecht, G. J., G. B. Steel and A. K. Oppenheim. Instrum. Soc. Amer. Trans. 5, 133 (1966).Google Scholar
  70. 70.
    Henry, K. W. A Technique for Measuring the Pressure, Volume, Enthalpy, and Resistance of Equilibrium Thermodynamic States of Liquid Metals at High Temperatures and Pressures, University of California, Lawrence Radiation Laboratory. UCRL-51035 (1971).Google Scholar
  71. 71.
    Hoffmann, G. W. Rev. Sci. Instrum. 42, 1643 (1971).Google Scholar
  72. 72.
    Hoffmann, G. W. and T. M. Jovin. Applied Optics, 10, 218 (1971).Google Scholar
  73. 73.
    Holland, T. E., T. J. Healey and C. H. Bagley. Instrum. Soc. Amer. Trans. 5, 5 (1966).Google Scholar
  74. 74.
    Hoyaux, M. F. High Temp. High Press. 2, 17 (1970).Google Scholar
  75. 75.
    Hyzer, W. G. Instrum. Soc. Amer. Trans. 5, 1 (1966).Google Scholar
  76. 76.
    Issinskii, I. B. and K. P. Myznikov. Instruments and Experimental Techniques (USSR), No. 3, 605 (1965).Google Scholar
  77. 77.
    James, T. E., K. Harries and R. D. Medford, ‘Development of fast 100-kV, 1-MA, solid dielectric switches and associated triggering studies’. Proceedings of the Symposium on Engineering Problems of Controlled Thermonuclear Research, p 77. Lawrence Radiation Laboratory (1965).Google Scholar
  78. 78.
    Jobes, F. C. Rev. Sci. Instrum. 39, 1429 (1968).Google Scholar
  79. 79.
    Jones, O. C. J. Sci. Instrum. 41, 653 (1964).Google Scholar
  80. 80.
    Kassirov, G. M. and B. M. Koval’chuk. Soviet. Phys.-Tech. Phys. 9, 377 (1964).Google Scholar
  81. 81.
    Konotop, V. V., V. Ya. Linetskii and S. M. Fertik. Instruments and Experimental Techniques (USSR), No. 6, 1430 (1965).Google Scholar
  82. 82.
    Korneff, T. Rev. Sci. Instrum. 42, 1561 (1971).Google Scholar
  83. 83.
    Korneff, T. and W. Chace. Rev. Sci. Instrum. 42, 1184 (1971).Google Scholar
  84. 84.
    Kroepelin, H. and K. K. Neumann, ‘An exploding-wire-driven, shock-wave generator for thermodynamic measurements in liquids at very high pressures’, in Proceedings of the Fourth Symposium on Thermophysical Properties, p 446. J. R. Moszynski, ed., American Society of Mechanical Engineers: New York (1968).Google Scholar
  85. 85.
    Kryder, M. H. and F. B. Humphrey. Rev. Sci. Instrum. 40, 829 (1969).Google Scholar
  86. 86.
    Kuswa, G. and C. Stallings. Rev. Sci. Instrum. 41, 1429 (1970).Google Scholar
  87. 87.
    Lapworth, K. C., L. A. Allnutt and J. R. Pendlebury. ‘Short duration temperature measurements by infra-red emission-absorption’, in Temperature, Vol. IV, p 665. H. H. Plumb, ed. Instrument Society of America: Pittsburgh (1972).Google Scholar
  88. 88.
    Leavitt, G. E., J. D. Shipman Jr and I. M. Vitkovitsky. Rev. Sci. Instrum. 36, 1371 (1965).Google Scholar
  89. 89.
    Lebedev, S. V. High Temperature, 6, 150 (1968).Google Scholar
  90. 90.
    Lebedev, S. V., B. V. Lukin, A. E. Rautbort and A. I. Savvatimskii. High Temperature, 7, 951 (1969).Google Scholar
  91. 91.
    Lebedev, S. V., A. I. Savvatimskii and Yu. B. Smirnov. High Temperature, 9, 578 (1971).Google Scholar
  92. 92.
    Lee, R. D. and E. Lewis. Applied Optics, 5, 1858 (1966).Google Scholar
  93. 93.
    Lieber, A. J. and H. D. Sutphin. Rev. Sci. Instrum. 42, 1663 (1971).Google Scholar
  94. 94.
    Loginov, V. A. Instruments and Experimental Techniques (USSR), No. 1, 181 (1964).Google Scholar
  95. 95.
    Lucovsky, G. and R. B. Emmons. Applied Optics, 4, 697 (1965).Google Scholar
  96. 96.
    Lundquist, S. and A. E. Vlastos. J. Appl. Phys. 41, 4830 (1970).Google Scholar
  97. 97.
    Malewski, R. Rev. Sci. Instrum. 39, 90 (1968).Google Scholar
  98. 98.
    Malkin. O. A. and A. V. Pyshnov. High Temperature, 9, 802 (1971).Google Scholar
  99. 99.
    Markiewicz, J. P. and J. L. Emmett. Applied Optics, 5, 1687 (1966).Google Scholar
  100. 100.
    Medley, S. S., F. L. Curzon and C. C. Daughney. Rev. Sci. Instrum. 36, 713 (1965).Google Scholar
  101. 101.
    Michon, M, H. Guillet, D. Le Goff and S. Raynaud. Rev. Sci. Instrum. 40, 263 (1969).Google Scholar
  102. 102.
    Moesta, H. and D. Breuer. Rev. Sci. Instrum. 36, 1372 (1965).Google Scholar
  103. 103.
    Morgan, P. D. and N. J. Peacock. J. Phys. {E)-Scientific Instruments}, 4, 677 (1971)Google Scholar
  104. 104.
    Nesterikhin, Yu. E, V. S. Komel’kov and E. Z. Meilikhov. Soviet Phys.-Tech. Phys. 9, 29 (1964).Google Scholar
  105. 105.
    Neumann, K. K, J. Salge, R. Brilka and T. Redeker, Z. Angew. Phys. 28, 65 (1969).Google Scholar
  106. 106.
    Neumann, K. K., J. Salge, H. Kroepelin and R. Willms, ‘Exploding-wire experiments in high-inductive discharge circuits for thermodynamic measurements’, in Proceedings of the Fifth Symposium on Thermophysical Properties, p 209. G. F. Bonilla, ed., American Society of Mechanical Engineers: New York (1970).Google Scholar
  107. 107.
    Nilsson, N R. and L. Högberg, eds. Proceedings of the Eighth International Congress on High-Speed Photography, Wiley: New York (1968).Google Scholar
  108. 108.
    Null, M. R. and W. W. Lozier. J. Opt. Soc. Amer. 52, 1156 (1962).Google Scholar
  109. 109.
    Oertel, G. K. and M. D. Williams. Rev. Sci. Instrum. 36, 672 (1965).Google Scholar
  110. 110.
    Oktay, E. Rev. Sci. Instrum. 36, 1327 (1965).Google Scholar
  111. 111.
    Ornstein, L. Th. M., G. A. J. Hugenholtz and H. A. van der Laan. J. Sci. Instrum. 42, 659 (1965).Google Scholar
  112. 112.
    Park, J. H. J. Res. Nat. Bur. Stand. 39, 191 (1947).Google Scholar
  113. 113.
    Parker, R. Trans. Met. Soc. AIME, 233, 1545 (1965).Google Scholar
  114. 114.
    Parker, R. and A. L. Austin. ‘Rapid-heating techniques by capacitor-discharge methods and their applications’, in Techniques of Material Preparation and Handling, p 307. R. F. Bunshah, ed., Interscience: New York (1968).Google Scholar
  115. 115.
    Pellinen, D. G. and S. Heurlin. Rev. Sci. Instrum. 42, 824 (1971).Google Scholar
  116. 116.
    Pellinen, D. G. and P. W. Spence. Rev. Sci. Instrum. 42, 1699 (1971).Google Scholar
  117. 117.
    Pendleton, W. K. Rev. Sci. Instrum. 36, 1546 (1965).Google Scholar
  118. 118.
    Polyakov, Yu. A. and N. V. Kotel’nikova. High Temperature, 9, 737 (1971).Google Scholar
  119. 119.
    Post, R. S. and Y. G. Chen. Rev. Sci. Instrum. 43, 622 (1972).Google Scholar
  120. 120.
    Price, M. J. J. Phys. (E)-Sci. Instr. 3, 521 (1970).Google Scholar
  121. 121.
    Rentzepis, P. M. and G. J. Mitschele. Analyt. Chem. 42, 20 (1970).Google Scholar
  122. 122.
    Roberts, J. R. Applied Optics, 4, 1179 (1965).Google Scholar
  123. 123.
    Salge, J., N. Pauls and K. K. Neumann. Z. Angew. Phys. 29, 339 (1970).Google Scholar
  124. 124.
    Schenck, W. J. Instrum. Soc. Amer. Trans. 5, 14 (1966).Google Scholar
  125. 125.
    Schrank, G. and G. Henry. Rev. Sci. Instrum. 35, 1326 (1964).Google Scholar
  126. 126.
    Schwab, A. J. IEEE Trans, on Power Apparatus and Systems, 90, 2251 (1971).Google Scholar
  127. 127.
    Shumaker, J. B. and G. H. Popenoe. J. Res. Nat. Bur. Stand. 76A(Phys. and Chem.), 71 (1972).Google Scholar
  128. 128.
    Simon, M. F. and G. L. Leroy. IEEE Trans, on Power Apparatus and Systems, 91, 478 (1972).Google Scholar
  129. 129.
    Speich, G. R. and A. Szirmae. ‘Rapid heating by laser techniques’, in Techniques of Materials Preparation and Handling, p 335. R. F. Bunshah, ed., Interscience: New York (1968).Google Scholar
  130. 130.
    Steele, E. L. Optical Lasers in Electronics. Wiley: New York (1968).Google Scholar
  131. 131.
    Stenerhag, B., S. K. Händel and B. Göhle. Rev. Sci. Instrum. 40, 563 (1969).Google Scholar
  132. 132.
    Stenerhag, B., S. K. Händel and B. Göhle. J. Appl. Phys. 42, 1876 (1971).Google Scholar
  133. 133.
    Takeshita, S. and T. Sasano. Proc. IEEE (Letters), 1404 (1968).Google Scholar
  134. 134.
    Tawara, H. Jap. J. Appl. Phys. 7, 1254 (1968).Google Scholar
  135. 135.
    Thomas, R. J. IEEE Trans, on Instrum. and Meas. 19, 102 (1970).Google Scholar
  136. 136.
    Thornton, E. J. Phys. E., Scientific Instruments, 3, 862 (1970).Google Scholar
  137. 137.
    Topp, M. R., P. M. Rentzepis and R. P. Jones. J. Appl. Phys. 42, 3415 (1971).Google Scholar
  138. 138.
    Xreverton, J. A. and J. L. Margrave. ‘Thermodynamic properties of liquid molybdenum by lévitation calorimetry’, in Proceedings of the Fifth Symposium on Thermophysical Properties, p 489. G. F. Bonilla, ed., American Society of Mechanical Engineers: New York (1970).Google Scholar
  139. 139.
    Urtiew, P. A. and R. Grover, ‘Radiation temperature in solids under shock loading’, in Temperature, Vol. IV, p 677. H. H. Plumb, ed. Instrument Society of America: Pittsburgh (1972).Google Scholar
  140. 140.
    Vlastos, A. E. J. Appl. Phys. 38, 4993 (1967).Google Scholar
  141. 141.
    Ware, K. D, J. W. Mather, A. H. Williams, P. J. Bottoms and J. P. Carpenter. Rev. Sci. Instrum. 42, 512 (1971).Google Scholar
  142. 142.
    Weber, F. N. and D. D. Shear. J. Appl. Phys. 40, 3854 (1969).Google Scholar
  143. 143.
    Weiss, H. H. Applied Optics, 4, 935 (1965).Google Scholar
  144. 144.
    Wood, S. M. and M. H. Miller. Rev. Sci. Instrum. 41, 1196 (1970).Google Scholar
  145. 145.
    Ya’akobi, B. J. Appl. Phys. 40, 4205 (1969).Google Scholar
  146. 146.
    Zavoisky, E. K. and S. D. Fanchenko. Applied Optics, 4, 1155 (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • Ared Cezairliyan
    • 1
  • Charles W. Beckett
    • 1
  1. 1.National Bureau of StandardsWashingtonUSA

Personalised recommendations