Thermodynamic Properties from Shock Waves

  • A. Lascar
  • A. Rauch


Shock wave techniques allow the investigation of properties of matter at very high pressures, which cannot be reached by any other experimental means. While static means permit pressures up to a few hundred kilobars†, one can produce shock waves behind which pressures rise to several tens of megabars in the case of solids; this corresponds to energies of the order of one megajoule per cm3, and this for durations of the order of a microsecond.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

V. References

  1. 1.
    Al’tshuler, L. V. Soviet Phys. Uspekhi, 8, 52 (1965).CrossRefGoogle Scholar
  2. 2.
    Al’tshuler, L. V., A. A. Bakanova and R. F. Trunin. Soviet Phys. Doklady, 3, 761 (1958).Google Scholar
  3. 3.
    Al’tshuler, L. V., S. B. Kormer, M. J. Brazhnik, L. A. Vladimirov, M. P. Speranskaya and A. I. Funtikov. Soviet Phys. JETP, 11, 766 (1960).Google Scholar
  4. 4.
    Barker, J. A. Lattice Theories of the Liquid State. Pergamon: Oxford (1963).Google Scholar
  5. 5.
    Becker, R. Z. Phys. 8, 321 (1921).CrossRefGoogle Scholar
  6. 6.
    Berger, J. and S. Joigneau. CR Acad. Sci., Paris, 259, 2506 (1959).Google Scholar
  7. 7.
    Bethe, H. A. Report: ‘The theory of shock waves for an arbitrary equation of state’. OSRD 545 (1942).Google Scholar
  8. 8.
    Compendium of shock wave data. UCRL 50108, I, 524 pp; II, 231 pp (1967).Google Scholar
  9. 9.
    Cook, M. A., R. T. Keyes and W. O. Ursenbach. J. Appl. Phys. 33, 3413 (1962).CrossRefGoogle Scholar
  10. 10.
    Cook, M. A. and L. A. Rogers. J. Appl. Phys. 34, 2330 (1963).CrossRefGoogle Scholar
  11. 11.
    Cowperthwaite, M. and J. H. Blackburn. ‘Shock temperature calculations for silicone fluid’. SRI Spec. Tech. Rep. No. 14 (1967).Google Scholar
  12. 12.
    Cowperthwaite, M. and R. Shaw. J. Chem. Phys. 53, 555 (1970).CrossRefGoogle Scholar
  13. 13.
    Dapoigny, J., J. Kieffer and B. Vodar. CR. Acad. Sci., Paris, 238, 215 (1954).Google Scholar
  14. 14.
    Dapoigny, J, J. Kieffer and B. Vodar. J. Phys. Radium, 16, 733 (1955).CrossRefGoogle Scholar
  15. 15.
    Dapoigny, J., J. Kieffer and B. Vodar. J. Phys. Radium, 17, 606 (1956).CrossRefGoogle Scholar
  16. 16.
    Dick, R. D. LA 3915, Los Alamos Scientific Laboratory of the University of California, Los Alamos, New Mexico (1968).Google Scholar
  17. 17.
    Doran, D. G. and R. K. Linde. Solid State Physics, F. Seitz and D. Turnbull, Eds, New York, Vol, 18, p 85 (1966).Google Scholar
  18. 18.
    Dremin, A. N. and O. N. Breusov. Russ. Chem. Rev. 37, 392 (1968).CrossRefGoogle Scholar
  19. 19.
    Dremin, A. N. and K. K. Shredov. Zh. Prikl. Mekh. Tekh. Fiz. 2, 154 (1964).Google Scholar
  20. 20.
    Duvall, G. E, G. R. Fowles and Y. Horie. ‘Equation of state in solids’. WSU-SDI-67-01, Vol. I (February 1967).Google Scholar
  21. 21.
    Duvall, G. E, G. R. Fowles, M. H. Miles and C. T. Tung. ‘Equations of state in solids’. WSU-SD1-68-01 (February 1968).Google Scholar
  22. 22.
    Eyring, H., R. E. Powell, A. H. Duffey and R. B. Parlin. Chem. Rev. 46, 69 (1949).CrossRefGoogle Scholar
  23. 23.
    Feynman, R. P., N. Metropolis and E. Teller. Phys. Rev. 74, 1561 (1949).CrossRefGoogle Scholar
  24. 24.
    Fickett, W. and W. W. Wood. Physics of Fluids, 3, 204 (1959).CrossRefGoogle Scholar
  25. 25.
    Graham, R. A. Bull. Amer. Phys. Soc. 7, 123 (1962).Google Scholar
  26. 26.
    Gurtman, G. A, J. W. Kvish and C. R. Martings. J. Appl. Phys. 42, 851 (1971).CrossRefGoogle Scholar
  27. 27.
    Hamann, S. D. Rev. Pure Appl. Chem. (Austral), 10, 139 (1960).Google Scholar
  28. 28.
    Hamann, S. D. Advances in High Pressure Research. R. S. Bradley, Ed, New York, Vol. I, p 85 (1966).Google Scholar
  29. 29.
    Hirschfelder, J. O, C. F. Curtiss and R. B. Bird. Molecular Theory of Gases and Liquids. Wiley: New York (1954).Google Scholar
  30. 30.
    Ivanov, A. G. and S. A. Novikov. Soviet Phys. JETP, 13, 1321 (1961).Google Scholar
  31. 31.
    Jones, A. H., W. M. Isbell and C. J. Maiden. J. Appl. Phys. 37, 3493 (1966).CrossRefGoogle Scholar
  32. 32.
    Kedrinskii, V. K, R. J. Soloukhin and S. V. Stebnovskii. J. Appl. Mech. Tech. Phys. 10, 607 (1969).CrossRefGoogle Scholar
  33. 33.
    Keeler, R. N., G. H. Bloom and A. C. Mitchell. Phys. Rev. Letters, 17, 852 (1966).CrossRefGoogle Scholar
  34. 34.
    Keeler, R. N. and E. B. Royce. UCRL 7/846. University of California, Livermore (1970).Google Scholar
  35. 35.
    Keeler, R. N., M. van Thiel and B. J. Alder. Physica, 31, 1437 (1965).CrossRefGoogle Scholar
  36. 36.
    Kormer, S. B., M. V. Sinitsyn, G. A. Kirillov and V. D. Urlin. Soviet Phys. JETP, 21, 689 (1965).Google Scholar
  37. 37.
    Kormer, S. B., K. B. Yushko and G. V. Krishkevich. Soviet Phys. JETP, 27, 879 (1968).Google Scholar
  38. 38.
    Landau, L. D. and E. M. Lifshitz. Fluid Mechanics, p 326. Pergamon: London (1959).Google Scholar
  39. 39.
    Landau, L. D. and E. M. Liftshitz. Quantum Mechanics. Pergamon: Oxford (1965).Google Scholar
  40. 40.
    Landau, L. D. and E. M. Liftshitz. Statistical Physics, p 78. Pergamon London (1969).Google Scholar
  41. 41.
    Lascar, A. and J. Baconin. To be published.Google Scholar
  42. 42.
    Latter, A. and R. Latter. ‘Equation of state of water’. RH 1492 AEC, Rand Corporation: Santa Monica, Calif. (1955).Google Scholar
  43. 43.
    Papetti, R. A. and M. Fujisaki. J. Appl. Phys. 39, 5412 (1968).CrossRefGoogle Scholar
  44. 44.
    Podurets, M. A, G. V. Simakov, R. F. Trunin, L. V. Popov and B. N. Moiseev. Soviet Phys. JETP, 35, 375 (1972).Google Scholar
  45. 45.
    Rice, M. H, R. G. McQueen and J. M. Walsh. Solid State Physics, F. Seitz and D. Turnbull, Eds, New York, Vol. VI, p 1 (1958).Google Scholar
  46. 46.
    Rice, M. H. and J. M. Walsh. J. Chem. Phys. 26, 824 (1957).CrossRefGoogle Scholar
  47. 47.
    Ross, M. Phys. Rev. 171, 777 (1968).CrossRefGoogle Scholar
  48. 48.
    Ross, M. UCRL 50911. University of California, Livermore (1970).Google Scholar
  49. 49.
    Ross, M. and B. J. Alder. J. Chem. Phys. 46, 4203 (1967).CrossRefGoogle Scholar
  50. 50.
    Ross, M. and B. J. Alder. J. Chem. Phys. 47, 4129 (1967).CrossRefGoogle Scholar
  51. 51.
    Saltzman, P. K, A. F. Collings and C. J. Pings. J. Chem. Phys. 50, 935 (1969).CrossRefGoogle Scholar
  52. 52.
    Skidmore, I. C. Appl. Mater. Res. 4, 131 (1965).Google Scholar
  53. 53.
    Skidmore, I. C. and E. Morris. Thermodynamics of Nuclear Materials, p 173. IAEA: Vienna (1962).Google Scholar
  54. 54.
    Van Thiel, M. and B. J. Alder. J. Chem. Phys. 44, 1056 (1966).CrossRefGoogle Scholar
  55. 55.
    Van Thiel, M. and B. J. Alder. Molec. Phys. 10, 427 (1966).CrossRefGoogle Scholar
  56. 56.
    Thomsen, J. S. Physics of Fluids, 11, 1338 (1968).CrossRefGoogle Scholar
  57. 57.
    Tung, C. T., D. McLachlan and G. E. Duvall. ‘Equations of state of liquids’. WSU-SDL-69-01 (April 1970).Google Scholar
  58. 58.
    Urlin, Y. D., Soviet Phys. JETP, 22, 341 (1966).Google Scholar
  59. 59.
    Urlin, Y. D. and A. A. Ivanov. Soviet Phys. JETP, 8, 380 (1963).Google Scholar
  60. 60.
    Vodar, B. and J. Kieffer. Mechanical Behavior of Materials under Pressure, p 1. H. L. Pugh, ed. Elsevier: Amsterdam, London, New York (1970).Google Scholar
  61. 61.
    Voskoboinikov, I. M. and V. M. Bogomolov. JETP Letters, 27, 879 (1968).Google Scholar
  62. 62.
    Wackerle, J., Q. W. L. Seitz and J. C. Jamieson. ‘Behavior of dense media under high pressure’. Symposium on Hydrodynamic Phenomena, p 85. IUTAM: Paris (1965).Google Scholar
  63. 63.
    Walsh, J. M. and M. M. Rice. J. Chem. Phys. 26, 815 (1957).CrossRefGoogle Scholar
  64. 64.
    Wentorf, R. H. Brit. J. Appl. Phys. 18, 865 (1967).CrossRefGoogle Scholar
  65. 65.
    Zel’dovich, Y. B. and Y. P. Raizer. Physics of Shock Waves and High-temperature Hydrodynamic Phenomena. Academic Press: New York (1967).Google Scholar
  66. 66.
    Zubarev, V. N. and G. S. Telegin. Soviet Phys. Doklady, 7, 34 (1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • A. Lascar
    • 1
  • A. Rauch
    • 1
  1. 1.Commissariat à l’Energie AtomiqueCentre d’Etudes de VaujoursFrance

Personalised recommendations